NCERT Solutions for Class 11 Maths Chapter Trigonometric Functions
NCERT Solutions for Class 11 Maths Chapter 3 Trigonometric Functions are available at ANAND CLASSES (A School Of Competitions), which are prepared by our expert teachers. All these solutions are written as per the latest update on the CBSE Syllabus and its guidelines. ANAND CLASSES (A School Of Competitions) provides step-by-step solutions by considering the different understanding levels of students and the marking scheme. Chapter 3, Trigonometric Functions, comes under NCERT Class 11 Maths and is an important chapter for students. Though the chapter has numerous mathematical terms and formulae, ANAND CLASSES (A School Of Competitions) has made NCERT Solutions for Class 11 Maths easy for the students to understand and remember with the usage of tricks.
Trigonometry has been developed to solve geometric problems involving triangles. Students cannot skip Trigonometric chapters since this is used in many areas, such as finding the heights of tides in the ocean, designing electronic circuits, etc. In the earlier classes, students have already studied trigonometric identities and applications of trigonometric ratios. In Class 11, trigonometric ratios are generalised to trigonometric function and their properties. However, the NCERT Solutions of ANAND CLASSES (A School Of Competitions) help the students to attain more knowledge and score full marks in this chapter of the examination.
Table of Contents
Exercise 3.1
1. Find the radian measures corresponding to the following degree measures:
(i) 25° (ii) – 47°30′ (iii) 240° (iv) 520°
SOLUTION
(i) Angle in radian = Angle in degree × π/180°
= 25° × π/180° = 5π/36 radian
(ii) -47° 30′ = -47° – 30 × 1/60
= -47° – 0.5° = -47.5°
Angle in radian = Angle in degree × π/180°
= -47.5° × π/180°
= -9.5π/36 radian
(iii) Angle in radian = Angle in degree × π/180°
= 240° × π/180° = 4π/3 radian
(iv) Angle in radian = Angle in degree × π/180°
= 520° × π/180° = 26π/9 radian
2. Find the degree measures corresponding to the following radian measures (Use π = 22/7).
(i) 11/16 (ii) – 4 (iii) 5π/3 (iv) 7π/6
SOLUTION
(i) Angle in degree = Angle in radian × 180°/π
= 11/16 × 180° × 7/22 = 630/16 °
= 39.375° = 39° + 0.375°
= 39° 0.375° × 60
= 39° 22.56′ = 39° 22.56′
= 39° 22′ (0.56 × 60)” = 39° 22′ 33.6”
(ii) Angle in degree = Angle in radian × 180°/π
= (-4) × 180° × 7/22
= -5040/22 °
= -2520/11 ° = -229+(1/11)°
= -229° (1/11) × 60
= -229° + (5+5/11) × 60
= -229° 5′ (5/11) × 60
= -229° 5′ 27.27”
(iii) Angle in degree = Angle in radian × 180°/π
= 5π/3 × 180°/π = 300°
(iv) Angle in degree = Angle in radian × 180°/π
= 7π/6 × 180°/π
= 210°
3. A wheel makes 360 revolutions in one minute. Through how many radians does it turn in one second?
SOLUTION
Number of revolutions made by the wheel in one minute = 360
Number of revolutions made by the wheel in one second = 360/60 = 6
Angle (in radians) the wheel turns in one revolution = 360° = 2π
Angle (in radians) the wheel turns in 60 revolutions = 2π × 6 = 12π
Hence, the wheel turns 12π radians in one second.
4. Find the degree measure of the angle subtended at the centre of a circle of radius 100 cm by an arc of length 22 cm (Use π = 22/7).
SOLUTION
Angle subtended by an arc at the centre of circle = θ = l/r radians
l = Length of arc
r = Radius of circle
Therefore, the required angle (in degrees) = l/r × 180/π
= 22/100 × 180 × 7/22
= 63/5 ° = 12° + (3/5)°
= 12° 3/5 × 60
= 12° 36′
Hence, the angle subtended at the centre of a circle of radius 100 cm by an arc of length 22 cm in degrees is 12° 36′.
5. In a circle of diameter 40 cm, the length of a chord is 20 cm. Find the length of minor arc of the chord.
SOLUTION
Radius of the circle = 40/2 = 20 cm
Length of chord = 20 cm
Let the centre be O and the chord be AB.
AO = BO = 20 cm (Radii of the circle)
AB = 20 cm (Given)
Therefore, AOB is an equilateral triangle.
This implies that all angles are 60°.
∠AOB = 60° = 60 × π/180 radian = π/3 radian
Let the length of minor arc AB = l
∠AOB = l/r
π/3 = l/20
20π/3 = l
Hence, the length of the required arc is 20π/3 cm.
6. If in two circles, arcs of the same length subtend angles 60° and 75° at the centre, find the ratio of their radii.
SOLUTION
Let there be two circles of radii r1 and r2 with angles θ1 = 60° and θ2 = 75° respectively subtended at the centre by arcs of same length l.
θ1 = 60° × π/180° radian = π/3 radian
θ2 = 75° × π/180° radian = 5π/12 radian
l = r1θ1
l = r2θ2
r1θ1 = r2θ2
r1 × π/3 = r2 × 5π/12
r1/r2 = 5/4
Hence, the ratio of the required radii is 5 : 4.
7. Find the angle in radian through which a pendulum swings if its length is 75 cm and the tip describes an arc of length
(i) 10 cm (ii) 15 cm (iii) 21 cm
SOLUTION
Radius = Length of pendulum = 75 cm
(i) Angle subtended = 10/r = 10/75
= 2/15 radian
(ii) Angle subtended = 15/r = 15/75
= 1/5 radian
(iii) Angle subtended = 21/r = 21/75
= 7/25 radian
Exercise 3.2
Find the values of other five trigonometric functions in Exercises 1 to 5.
1. cos x = -1/2, x lies in third quadrant.
SOLUTION
cos x = -1/2
sec x = 1/cos x = -2
We know that
cos2 x + sin2 x = 1
sin2 x = 1 – cos2 x
sin2 x = 1 – (-1/2)2
sin2 x = 1 – 1/4
sin2 x = 3/4
sin x = ±√3/2
It is given that x lies in the third quadrant. Therefore, sin x will be negative.
sin x = -√3/2
cosec x = 1/sin x = -2/√3
tan x = sin x/cos x
= -√3/2 × (-2/1)
tan x = √3
cot x = 1/tan x = 1/√3
2. sin x = 3/5, x lies in second quadrant.
SOLUTION
sin x = 3/5
cosec x = 1/sin x = 5/3
We know that
cos2 x + sin2 x = 1
cos2 x = 1 – sin2 x
cos2 x = 1 – (3/5)2
cos2 x = 1 – 9/25
cos2 x = 16/25
cos x = ±4/5
It is given that x lies in the second quadrant. Therefore, cos x will be negative.
cos x = -4/5
sec x = 1/cos x = -5/4
tan x = sin x/cos x
= 3/5 × (-5/4)
tan x = -3/4
cot x = 1/tan x = -4/3
3. cot x = 3/4, x lies in third quadrant.
SOLUTION
cot x = 3/4
tan x = 1/cot x = 4/3
We know that
1 + tan2 x = sec2 x
sec2 x = 1 + (4/3)2
sec2 x = 1 + 16/9
sec2 x = 25/9
sec x = ±5/3
It is given that x lies in the third quadrant. Therefore, sec x will be negative.
sec x = -5/3
cos x = 1/sec x = -3/5
We know that
1 + cot2 x = cosec2 x
cosec2 x = 1 + (3/4)2
cosec2 x = 1 + 9/16
cosec2 x = 25/16
cosec x = ±5/4
It is given that x lies in the third quadrant. Therefore, cosec x will be negative.
cosec x = -5/4
sin x = 1/cosec x = -4/5
4. sec x = 13/5, x lies in fourth quadrant.
SOLUTION
sec x = 13/5
cos x = 1/sec x = 5/13
We know that
1 + tan2 x = sec2 x
tan2 x = sec2 x – 1
tan2 x = (13/5)2 – 1
tan2 x = 169/25 – 1
tan2 x = 144/25
tan x = ±12/5
It is given that x lies in fourth quadrant. Therefore, tan x will be negative.
tan x = -12/5
cot x = 1/tan x = -5/12
We know that
sin2 x + cos2 x = 1
sin2 x = 1 – cos2 x
sin2 x = 1 – (5/13)2
sin2 x = 1 – 25/169
sin2 x = 144/169
sin x = ±12/13
It is given that x lies in fourth quadrant. Therefore, sin x will be negative.
sin x = -12/13
cosec x = 1/sin x = -13/12
5. tan x = -5/12, x lies in second quadrant.
SOLUTION
tan x = -5/12
cot x = 1/tan x = -12/5
We know that
1 + tan2 x = sec2 x
sec2 x = 1 + (-5/12)2
sec2 x = 1 + 25/144
sec2 x = 169/144
sec x = ±13/12
It is given that x lies in the second quadrant. Therefore, sec x will be negative.
sec x = -13/12
cos x = 1/sec x = -12/13
We know that
1 + cot2 x = cosec2 x
cosec2 x = 1 + (-12/5)2
cosec2 x = 1 + 144/25
cosec2 x = 169/25
cosec x = ±13/5
It is given that x lies in the third quadrant. Therefore, cosec x will be positive.
cosec x = 13/5
sin x = 1/cosec x = 5/13
Find the values of the trigonometric functions in Exercises 6 to 10.
6. sin 765°
SOLUTION
sin 765° = sin (720° + 45°)
= sin (2 × 360° + 45°)
= sin (2π + 45°)
We know that sin x repeats its values after each 2π interval. Therefore,
sin (2π + 45°) = sin 45°
= 1/√2
Hence, sin 765° = 1/√2.
7. cosec (-1410°)
SOLUTION
cosec (-1410°) = cosec (-1440° + 30°)
= cosec (-4 × 360° + 30°)
= cosec (-4π + 30°)
We know that cosec x repeats its values after each 2π interval. Therefore,
cosec (-4π + 30°) = cosec (2 × 2π + (-4π + 30°))
= cosec (30°) = 2
Hence, cosec (-1410°) = 2.
8. tan 19π/3
SOLUTION
tan 19π/3 = tan (18π/3 + π/3)
= tan (6π + π/3)
We know that tan x repeats its values after each π interval. Therefore,
tan (6π + π/3) = tan π/3 = √3
Hence, tan 19π/3 = √3.
9. sin (-11π/3)
SOLUTION
sin (-11π/3) = sin (-12π/3 + π/3)
= sin (-4π + π/3)
We know that sin x repeats its values after each 2π interval. Therefore,
sin (-4π + π/3) = sin (2 × 2π + (-4π + π/3))
= sin (π/3) = √3/2
Hence, sin (-11π/3) = √3/2.
10. cot (-15π/4)
SOLUTION
cot (-15π/4) = cot (-16π/4 + π/4)
= cot (-4π + π/4)
We know that cot x repeats its values after each π interval. Therefore,
cot (-4π + π/4) = cot (4 × π + (-4π + π/4))
= cot (π/4) = 1
Hence, cot (-15π/4) = 1.
Exercise 3.3
Prove that:
1. sin2 π/6 + cos2 π/3 – tan2 π/4 = -1/2
SOLUTION
LHS = sin2 π/6 + cos2 π/3 – tan2 π/4
= (1/2)2 + (1/2)2 – 12
= 1/4 + 1/4 – 1
= 1/2 – 1
= -1/2 = RHS
Hence, proved.
2. 2 sin2 π/6 + cosec2 (7π/6) cos2 π/3 = 3/2
SOLUTION
LHS = 2 sin2 π/6 + cosec2 (7π/6) cos2 π/3
= 2 × (1/2)2 + cosec2 (6π/6 + π/6) × (1/2)2
= 2 × 1/4 + cosec2 (π + π/6) × 1/4
= 1/2 + cosec2 π/6 × 1/4
= 1/2 + 4 × 1/4
= 1/2 + 1 = 3/2 = RHS
Hence, proved.
3. cot2 π/6 + cosec 5π/6 + 3tan2 π/6 = 6
SOLUTION
LHS = cot2 π/6 + cosec 5π/6 + 3tan2 π/6
= (√3)2 + cosec (6π/6 – π/6) + 3(1/√3)2
= 3 + cosec (π – π/6) + 3 × 1/3
= 4 + cosec π/6
= 4 + 2
= 6 = RHS
Hence, proved.
4. 2 sin2 3π/4 + 2 cos2 π/4 + 2sec2 π/3 = 10
SOLUTION
LHS = 2 sin2 3π/4 + 2 cos2 π/4 + 2sec2 π/3
= 2 sin2 (4π/4 – π/4) + 2(1/√2)2 + 2(2)2
= 2 sin2 (π – π/4) + 2(1/2) + 2(4)
= 2 sin2 π/4 + 1 + 8
= 2(1/√2)2 + 9
= 2(1/2) + 9
= 1 + 9 = 10 = RHS
Hence, proved.
5. Find the value of:
(i) sin 75° (ii) tan 15°
SOLUTION
(i) sin 75° = sin (45° + 30°)
Using the identity sin (x + y) = sin x cos y + cos x sin y, we get:
sin (45° + 30°) = sin 45° cos 30° + cos 45° sin 30°
= (1/√2) × (√3/2) + (1/√2) × (1/2)
= √3/2√2 + 1/2√2
= (√3 + 1)/2√2
Hence, sin 75° = (√3 + 1)/2√2.
(ii) tan 15° = tan (45° – 30°)
Using the identity tan (x – y) = (tan x – tan y)/(1 + tan x tan y), we get:
Hence, tan 15° = (√3 – 1)/(√3 + 1).
Prove the following:
6. cos (π/4 – x) cos (π/4 – y) – sin (π/4 – x) sin (π/4 – y) = sin (x + y)
SOLUTION
LHS =
Multiply and divide by 2
= 1/2 × [2{cos (π/4 – x) cos (π/4 – y) – sin (π/4 – x) sin (π/4 – y)}]
= 1/2 × [2 cos (π/4 – x) cos (π/4 – y) – 2 sin (π/4 – x) sin (π/4 – y)]
Using the identities –
2 cos A cos B = cos (A + B) + cos (A – B)
-2 sin A sin B = cos (A + B) – cos (A – B)
we get:
1/2 × [2 cos (π/4 – x) cos (π/4 – y) – 2 sin (π/4 – x) sin (π/4 – y)]
= 1/2 × [cos (π/4 – x + π/4 – y) + cos (π/4 – x + π/4 – y)] (cos (A – B) cancels out)
= 1/2 × [2 cos (π/4 – x + π/4 – y)]
= cos (π/2 – (x + y))
We know that cos (π/2 – θ) = sin θ. Therefore,
cos (π/2 – (x + y)) = sin (x + y) = RHS
Hence, proved.
7. tan (π/4 + x)/tan (π/4 – x) = ((1 + tan x)/(1 – tan x))2
SOLUTION
LHS = tan (π/4 + x)/tan (π/4 – x)
Using the identities –
tan (A + B) = (tan A + tan B)/(1 – tan A tan B)
tan (A – B) = (tan A – tan B)/(1 + tan A tan B)
we get:
tan (π/4 + x)/tan (π/4 – x)
= (tan π/4 + tan x)/(1 – tan π/4 tan x) × (1 + tan π/4 tan x)/(tan π/4 – tan x)
= (1 + tan x)/(1 – tan x) × (1 + tan x)/(1 – tan x)
= (1 + tan x)2/(1 – tan x)2 = RHS
Hence, proved.
8. (cos (π + x) cos (-x))/(sin (π – x) cos (π/2 + x)) = cot2 x
SOLUTION
LHS = (cos (π + x) cos (-x))/(sin (π – x) cos (π/2 + x))
= (-cos x) cos x/sin x (-sin x)
= cos2 x/sin2 x
= (cos x/sin x)2
= cot2 x = RHS
Hence, proved.
9. cos (3π/2 + x) cos (2π + x) [cot (3π/2 – x) + cot (2π + x)] = 1
SOLUTION
LHS = cos (3π/2 + x) cos (2π + x) [cot (3π/2 – x) + cot (2π + x)]
Here,
cos (3π/2 + x) = cos (4π/2 – π/2 + x)
= cos (2π – (π/2 – x))
= cos (π/2 – x)
= sin x
cot (3π/2 – x) = cot (4π/2 – π/2 – x)
= cot (2π – (π/2 + x))
= -cot (π/2 + x)
= tan x
Now, LHS = sin x cos (2π + x) [tan x + cot(2π + x)]
= sin x cos x [tan x + cot x]
= sin x cos x [sin x/ cos x + cos x/sin x]
= sin x cos x [(sin2 x + cos2 x)/sin x cos x]
= sin2 x + cos2 x = 1 = RHS
Hence, proved.
10. sin (n + 1)x sin (n + 2)x + cos (n + 1)x cos (n + 2)x = cos x
SOLUTION
LHS = sin (n + 1)x sin (n + 2)x + cos (n + 1)x cos (n + 2)x
Multiply and divide by 2
sin (n + 1)x sin (n + 2)x + cos (n + 1)x cos (n + 2)x
= 1/2 × 2[sin (n + 1)x sin (n + 2)x + cos (n + 1)x cos (n + 2)x]
= 1/2 × [2 sin (n + 1)x sin (n + 2)x + 2 cos (n + 1)x cos (n + 2)x]
Using the identities –
2 cos A cos B = cos (A + B) + cos (A – B)
-2 sin A sin B = cos (A + B) – cos (A – B)
we get:
1/2 × [2 sin (n + 1)x sin (n + 2)x + 2 cos (n + 1)x cos (n + 2)x]
= 1/2 × [-{cos (n + 1 + n + 2)x – cos (n + 1 – n – 2)x} + cos (n + 1 + n + 2)x + cos (n + 1 – n – 2)x]
= 1/2 × [2 cos (n + 1 – n – 2)x] (cos (A + B) cancels out)
= 1/2 × [2 cos (-x)]
= 1/2 × 2 cos x
= cos x = RHS
Hence, proved.
11. cos (3π/4 + x) – cos (3π/4 – x) = -√2 sin x
SOLUTION
LHS = cos (3π/4 + x) – cos (3π/4 – x)
Using the identity cos A – cos B = -2 sin ((A + B)/2) sin ((A – B)/2), we get:
= -2 sin [(3π/4 + x + 3π/4 – x)/2] sin [(3π/4 + x – 3π/4 + x)/2]
= -2 sin [(3π/2)/2] sin [2x/2]
= -2 sin 3π/4 sin x
Here,
sin 3π/4 = sin (π – π/4)
= sin π/4
Now, LHS = -2 sin π/4 sin x
= -2 (1/√2) sin x
= -√2 sin x = RHS
Hence, proved.
12. sin2 6x – sin2 4x = sin 2x sin 10x
SOLUTION
LHS = sin2 6x – sin2 4x
= (sin 6x + sin 4x) (sin 6x – sin 4x)
Using the identities –
sin A + sin B = 2 sin ((A + B)/2) cos ((A – B)/2)
sin A – sin B = 2 cos ((A + B)/2) sin ((A – B)/2)
we get:
(sin 6x + sin 4x) (sin 6x – sin 4x)
= [2 sin ((6x + 4x)/2) cos ((6x – 4x)/2)] [2 cos ((6x + 4x)/2) sin ((6x – 4x)/2)]
= [2 sin (10x/2) cos (2x/2)] [2 cos (10x/2) sin (2x/2)]
= 4 sin 5x cos x cos 5x sin x
= (2 sin 5x cos 5x)(2 sin x cos x)
Using the identity sin 2A = 2 sin A cos A, we get:
LHS = sin 10x sin 2x = RHS
Hence, proved.
13. cos2 2x – cos2 6x = sin 4x sin 8x
SOLUTION
LHS = cos2 2x – cos2 6x = (cos 2x + cos 6x) (cos 2x – cos 6x)
Using the identities-
cos A + cos B = 2 cos ((A + B)/2) cos ((A – B)/2)
cos A – cos B = -2 sin ((A + B)/2) sin ((A – B)/2)
we get:
(cos 2x + cos 6x) (cos 2x – cos 6x)
= [2 cos ((2x + 6x)/2) cos ((2x – 6x)/2)] [-2 sin ((2x + 6x)/2) sin ((2x – 6x)/2)]
= [2 cos ((8x)/2) cos ((-4x)/2)] [-2 sin ((8x)/2) sin ((-4x)/2)]
= [2 cos 4x cos (-2x)] [-2 sin 4x sin (-2x)]
= [2 cos 4x cos 2x] [2 sin 4x sin 2x]
= [2 sin 4x cos 4x] [2 sin 2x cos 2x]
Using the identity sin 2A = 2 sin A cos A, we get:
LHS = sin 2(4x) sin 2(2x)
= sin 8x sin 4x = RHS
Hence, proved.
14. sin 2x + 2 sin 4x + sin 6x = 4 cos2 x sin 4x
SOLUTION
LHS = sin 2x + 2 sin 4x + sin 6x
= (sin 2x + sin 6x) + 2 sin 4x
Using the identity sin A + sin B = 2 sin ((A + B)/2) cos ((A – B)/2), we get:
(sin 2x + sin 6x) + 2 sin 4x
= 2 sin ((2x + 6x)/2) cos ((2x – 6x)/2) + 2 sin 4x
= 2 sin ((8x)/2) cos ((-4x)/2) + 2 sin 4x
= 2 sin 4x cos (-2x) + 2 sin 4x
= 2 sin 4x cos 2x + 2 sin 4x
= 2 sin 4x (cos 2x + 1)
Using the identity cos 2x = 2 cos2 x – 1, we get:
LHS = 2 sin 4x (2 cos2 x – 1 + 1)
= 2 sin 4x (2 cos2 x)
= 4 cos2 x sin 4x = RHS
Hence, proved.
15. cot 4x (sin 5x + sin 3x) = cot x (sin 5x – sin 3x)
SOLUTION
LHS = cot 4x (sin 5x + sin 3x)
= cos 4x/sin 4x × [sin 5x + sin 3x]
Using the identity sin A + sin B = 2 sin ((A + B)/2) cos ((A – B)/2), we get:
cos 4x/sin 4x × [sin 5x + sin 3x]
= cos 4x/sin 4x × [2 sin ((5x + 3x)/2) cos ((5x – 3x)/2)]
= cos 4x/sin 4x × [2 sin ((8x)/2) cos ((2x)/2)]
= cos 4x/sin 4x × [2 sin 4x cos x]
= 2 cos 4x cos x
RHS = cot x (sin 5x – sin 3x)
= cos x/sin x × [sin 5x – sin 3x]
Using the identity sin A – sin B = 2 cos ((A + B)/2) sin ((A – B)/2), we get:
cos x/sin x × [sin 5x – sin 3x]
= cos x/sin x × [2 cos ((5x + 3x)/2) sin ((5x – 3x)/2)]
= cos x/sin x × [2 cos ((8x)/2) sin ((2x)/2)]
= cos x/sin x × [2 cos 4x sin x]
= 2 cos 4x cos x
Since, LHS = RHS.
Hence, proved.
16. (cos 9x – cos 5x)/(sin 17x – sin 3x) = – (sin 2x)/(cos 10x)
SOLUTION
LHS = (cos 9x – cos 5x)/(sin 17x – sin 3x)
Using the identities-
cos A – cos B = -2 sin ((A + B)/2) sin ((A – B)/2)
sin A – sin B = 2 cos ((A + B)/2) sin ((A – B)/2)
we get:
(cos 9x – cos 5x)/(sin 17x – sin 3x)
= [-2 sin ((9x + 5x)/2) sin ((9x – 5x)/2)]/[2 cos ((17x + 3x)/2) sin ((17x – 3x)/2)]
= [-2 sin ((14x)/2) sin ((4x)/2)]/[2 cos ((20x)/2) sin ((14x)/2)]
= [-2 sin 7x sin 2x]/[2 cos 10x sin 7x]
= -(sin 2x)/(cos 10x) = RHS
Hence, proved.
17. (sin 5x + sin 3x)/(cos 5x + cos 3x) = tan 4x
SOLUTION
LHS = (sin 5x + sin 3x)/(cos 5x + cos 3x)
Using the identities-
cos A + cos B = 2 cos ((A + B)/2) cos ((A – B)/2)
sin A + sin B = 2 sin ((A + B)/2) cos ((A – B)/2)
we get:
(sin 5x + sin 3x)/(cos 5x + cos 3x)
= [2 sin ((5x + 3x)/2) cos ((5x – 3x)/2)]/[2 cos ((5x + 3x)/2) cos ((5x – 3x)/2)]
= [2 sin ((8x)/2) cos ((2x)/2)]/[2 cos ((8x)/2) cos ((2x)/2)]
= [2 sin 4x cos x]/[2 cos 4x cos x]
= sin 4x/cos 4x = tan 4x = RHS
Hence, proved.
18. (sin x – sin y)/(cos x + cos y) = tan ((x – y)/2)
SOLUTION
LHS = (sin x – sin y)/(cos x + cos y)
Using the identities-
cos A + cos B = 2 cos ((A + B)/2) cos ((A – B)/2)
sin A – sin B = 2 cos ((A + B)/2) sin ((A – B)/2)
we get:
(sin x – sin y)/(cos x + cos y)
= [2 cos ((x + y)/2) sin ((x – y)/2)]/[2 cos ((x + y)/2) cos ((x – y)/2)]
= sin ((x – y)/2)/cos ((x – y)/2)
= tan ((x – y)/2) = RHS
Hence, proved.
19. (sin x + sin 3x)/(cos x + cos 3x) = tan 2x
SOLUTION
LHS = (sin x + sin 3x)/(cos x + cos 3x)
Using the identities-
cos A + cos B = 2 cos ((A + B)/2) cos ((A – B)/2)
sin A + sin B = 2 sin ((A + B)/2) cos ((A – B)/2)
we get:
(sin x + sin 3x)/(cos x + cos 3x)
= [2 sin ((x + 3x)/2) cos ((x – 3x)/2)]/[2 cos ((x + 3x)/2) cos ((x – 3x)/2)]
= [2 sin ((4x)/2) cos ((-2x)/2)]/[2 cos ((4x)/2) cos ((-2x)/2)]
= [2 sin (2x) cos (-x)]/[2 cos (2x) cos (-x)]
= sin 2x/cos 2x = tan 2x = RHS
Hence, proved.
20. (sin x – sin 3x)/(sin2 x – cos2 x) = 2 sin x
SOLUTION
LHS = (sin x – sin 3x)/(sin2 x – cos2 x)
Using the identity sin A – sin B = 2 cos ((A + B)/2) sin ((A – B)/2), we get:
(sin x – sin 3x)/(sin2 x – cos2 x)
= [2 cos ((x + 3x)/2) sin ((x – 3x)/2)]/(sin2 x – cos2 x)
= [2 cos ((4x)/2) sin ((-2x)/2)]/(sin2 x – cos2 x)
= [2 cos (2x) sin (-x)]/(sin2 x – cos2 x)
= [-2 cos 2x sin x]/[-(cos2 x – sin2 x)]
Using the identity cos2 x – sin2 x = cos 2x, we get:
LHS = (2 cos 2x sin x)/(cos 2x)
= 2 sin x = RHS
Hence, proved.
21. (cos 4x + cos 3x + cos 2x)/(sin 4x + sin 3x + sin 2x) = cot 3x
SOLUTION
LHS = (cos 4x + cos 3x + cos 2x)/(sin 4x + sin 3x + sin 2x)
= (cos 4x + cos 2x + cos 3x)/(sin 4x + sin 2x + sin 3x)
Using the identities-
cos A + cos B = 2 cos ((A + B)/2) cos ((A – B)/2)
sin A + sin B = 2 sin ((A + B)/2) cos ((A – B)/2)
we get:
[(cos 4x + cos 2x) + cos 3x]/[(sin 4x + sin 2x) + sin 3x]
= [2 cos ((4x + 2x)/2) cos ((4x – 2x)/2) + cos 3x]/[2 sin ((4x + 2x)/2) cos ((4x – 2x)/2) + sin 3x]
= [2 cos (6x)/2) cos ((2x)/2) + cos 3x]/[2 sin ((6x)/2) cos ((2x)/2) + sin 3x]
= [2 cos 3x cos x + cos 3x]/[2 sin 3x cos x + sin 3x]
= cos 3x (2 cos x + 1)/sin 3x (2 cos x + 1)
= cos 3x/sin 3x = cot 3x = RHS
Hence, proved.
22. cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1
SOLUTION
LHS = cot x cot 2x – cot 2x cot 3x – cot 3x cot x
= cot x cot 2x – cot 3x (cot 2x + cot x)
= cot x cot 2x – cot (2x + x) (cot 2x + cot x)
Using the identity cot (A + B) = (cot A cot B – 1)/(cot A + cot B), we get:
cot x cot 2x – cot (2x + x) (cot 2x + cot x)
= cot x cot 2x – [(cot 2x cot x – 1)/(cot 2x + cot x)] × (cot 2x + cot x)
= cot x cot 2x – (cot 2x cotx – 1)
= cot x cot 2x – cot 2x cotx + 1
= 1 = RHS
Hence, proved.
23. tan 4x = (4 tan x (1 – tan2 x))/(1 – 6 tan2 x + tan4 x)
SOLUTION
LHS = tan 4x = tan 2(2x)
Using the identity tan 2A = 2 tan A/(1 – tan2 A), we get:
tan 2(2x) = 2 tan 2x/(1 – tan2 2x)
Now, tan 2x = 2 tan x/(1 – tan2 x). Thus,
LHS = 2 [2 tan x/(1 – tan2 x)]/[1 – (2 tan x/(1 – tan2 x))2]
= [4 tan x/(1 – tan2 x)]/[1 – (4 tan2 x/(1 – tan2 x)2)]
= [4 tan x/(1 – tan2 x)]/[((1 – tan2 x)2 – 4 tan2 x)/(1 – tan2 x)2]
= 4 tan x/(1 – tan2 x) × (1 – tan2 x)2/{(1 – tan2 x)2 – 4 tan2 x}
= (4 tan x (1 – tan2 x))/(1 + tan4 x – 2 tan2x – 4 tan2 x)
= (4 tan x (1 – tan2 x))/(1 – 6 tan2 x + tan4 x) = RHS
Hence, proved.
24. cos 4x = 1 – 8 sin2 x cos2x
SOLUTION
LHS = cos 4x = cos 2(2x)
Using the identity cos 2A = 1 – 2 sin2 A, we get:
cos 2(2x) = 1 – 2 sin2 2x
Using the identity sin 2A = 2 sin A cos A, we get:
1 – 2 sin2 2x = 1 – 2 × (2 sin x cos x)2
= 1 – 2 × (4 sin2 x cos2 x)
= 1 – 8 sin2 x cos2 x = RHS
Hence, proved.
25. cos 6x = 32 cos6 x – 48 cos4 x + 18 cos2 x – 1
SOLUTION
LHS = cos 6x = cos 3(2x)
Using the identity cos 3A = 4 cos3 A – 3 cos A, we get:
cos 3(2x) = 4 cos3 2x – 3 cos 2x
Using the identity cos 2A = 2 cos2 A – 1, we get:
4 cos3 2x – 3 cos 2x
= 4 × (2 cos2 x – 1)3 – 3(2 cos2 x – 1)
= 4 × [23 cos6 x – 1 + 3(2 cos2 x)(1)2 – 3(2 cos2 x)2(1)] – 6 cos2 x + 3
= 4 × [8 cos6 x – 1 + 6 cos2 x – 12 cos4 x] – 6 cos2 x + 3
= 32 cos6 x – 4 + 24 cos2 x – 48 cos4 x – 6 cos2 x + 3
= 32 cos6 x – 48 cos4 x + 18 cos2 x – 1 = RHS
Hence, proved.
Exercise 3.4
Find the principal and general solutions of the following equations:
1. tan x = √3
SOLUTION
tan x = √3 (Given)
We know that
tan π/3 = √3
We also know that the value of tan repeats after an interval of π. Therefore,
tan (π/3) = tan (π + π/3)
= tan 4π/3
Hence, the principal solutions are x = π/3 and 4π/3.
Now, tan x = tan π/3. So,
x = nπ + π/3, where n ∈ Z
Hence, the general solution is x = nπ + π/3, where n ∈ Z.
2. sec x = 2
SOLUTION
sec x = 2 (Given)
We know that
sec π/3 = 2
We also know that the value of sec repeats after an interval of 2π. Therefore,
sec (π/3) = sec (2π – π/3)
= sec 5π/3
Hence, the principal solutions are x = π/3 and 5π/3.
Now, sec x = sec π/3. Therefore,
cos x = cos π/3
So,
x = 2nπ ± π/3, where n ∈ Z
Hence, the general solution is x = 2nπ ± π/3, where n ∈ Z.
3. cot x = -√3
SOLUTION
cot x = -√3 (Given)
We know that
cot π/6 = √3
cot (π – π/6) = -cot π/6 = -√3
and cot (π – π/6) = cot 5π/6
We also know that the value of cot repeats after an interval of π. Therefore,
cot (π – π/6) = cot (π + π – π/6)
= cot (2π – π/6)
= -cot 11π/6
Hence, the principal solutions are x = 5π/6 and 11π/6.
Now, cot x = cot 5π/6. Therefore,
tan x = tan 5π/6
So,
x = nπ + 5π/6, where n ∈ Z
Hence, the general solution is x = nπ + 5π/6, where n ∈ Z.
4. cosec x = -2
SOLUTION
cosec x = -2 (Given)
We know that
cosec π/6 = 2
cosec (π + π/6) = -cosec π/6 = -2
and cosec (π + π/6) = cosec 7π/6
Also,
cosec (2π – π/6) = -cosec π/6 = -2
and cosec (2π – π/6) = cosec 11π/6
Hence, the principal solutions are x = 7π/6 and 11π/6.
Now, cosec x = cosec 7π/6. Therefore,
sin x = sin 7π/6
So,
x = nπ + (-1)n 7π/6, where n ∈ Z
Hence, the general solution is x = nπ + (-1)n 7π/6, where n ∈ Z.
Find the general solution for each of the following equations:
5. cos 4x = cos 2x
SOLUTION
cos 4x = cos 2x
cos 4x – cos 2x = 0
Using the identity cos A – cos B = -2 sin ((A + B)/2) sin ((A – B)/2), we get:
-2 sin ((A + B)/2) sin ((A – B)/2) = 0
-2 sin ((4x + 2x)/2) sin ((4x – 2x)/2) = 0
-2 sin ((6x)/2) sin ((2x)/2) = 0
-2 sin 3x sin x = 0
sin 3x sin x = 0
Now, sin 3x = 0 or sin x = 0.
Therefore,
3x = nπ OR x = nπ, where n ∈ Z
Hence, the general solution is
x = nπ/3
OR
x = nπ
where n ∈ Z.
6. cos 3x + cos x – cos 2x = 0
SOLUTION
cos 3x + cos x – cos 2x = 0
Using cos A + cos B = 2 cos ((A + B)/2) cos ((A – B)/2), we get:
2 cos ((3x + x)/2) cos ((3x – x)/2) – cos 2x = 0
2 cos ((4x)/2) cos ((2x)/2) – cos 2x = 0
2 cos 2x cos x – cos 2x = 0
cos 2x (2 cos x – 1) = 0
Now, cos 2x = 0 or 2 cos x – 1 = 0.
cos 2x = 0 or cos x = 1/2 = cos π/3
Therefore,
2x = (2n + 1)π/2 OR x = 2nπ ± π/3, where n ∈ Z
Hence, the general solution is
x = (2n + 1)π/4
OR
x = 2nπ ± π/3
where n ∈ Z.
7. sin 2x + cos x = 0
SOLUTION
sin 2x + cos x = 0
Using the identity sin 2A = 2 sin A cos A, we get:
2 sin x cos x + cos x = 0
cos x (2 sin x + 1) = 0
Now, cos x = 0 or 2 sin x + 1 = 0.
cos x = 0 or sin x = -1/2 = -sin π/6
-sin π/6 = sin (π + π/6) = sin 7π/6
Therefore,
x = (2n + 1)π/2 OR x = nπ + (-1)n 7π/6, where n ∈ Z
Hence, the general solution is
x = (2n + 1)π/2
OR
x = nπ + (-1)n 7π/6
where n ∈ Z.
8. sec2 2x = 1 – tan 2x
SOLUTION
sec2 2x = 1 – tan 2x
Using the identity sec2 A = 1 + tan2 A, we get:
1 + tan2 2x = 1 – tan 2x
tan2 2x + tan 2x = 0
tan 2x (tan 2x + 1) = 0
Now, tan 2x = 0 or tan 2x + 1 = 0
tan 2x = 0 or tan 2x = -1 = -tan π/4
-tan π/4 = tan (π – π/4) = tan 3π/4
Therefore,
2x = nπ + 0 OR 2x = nπ + 3π/4, where n ∈ Z
Hence, the general solution is
x = nπ/2
OR
x = nπ/2 + 3π/8
where n ∈ Z.
9. sin x + sin 3x + sin 5x = 0
SOLUTION
sin x + sin 3x + sin 5x = 0
sin x + sin 5x + sin 3x = 0
Using the identity sin A + sin B = 2 sin ((A + B)/2) cos ((A – B)/2), we get:
2 sin ((x + 5x)/2) cos ((x – 5x)/2) + sin 3x = 0
2 sin ((6x)/2) cos ((-4x)/2) + sin 3x = 0
2 sin 3x cos (-2x) + sin 3x = 0
2 sin 3x cos 2x + sin 3x = 0
sin 3x (2 cos 2x + 1) = 0
Now, sin 3x = 0 or 2 cos 2x + 1 = 0
sin 3x = 0 or cos 2x = -1/2 = -cos π/3
-cos π/3 = cos (π – π/3) = cos 2π/3
Therefore,
3x = nπ OR 2x = 2nπ ± 2π/3, where n ∈ Z
Hence, the general solution is
x = nπ/3
OR
x = nπ ± π/3
where n ∈ Z.
Miscellaneous Exercise
Prove that:
1. 2 cos π/13 cos 9π/13 + cos 3π/13 + cos 5π/13 = 0
SOLUTION
LHS = 2 cos π/13 cos 9π/13 + cos 3π/13 + cos 5π/13
Using the identity cos A + cos B = 2 cos ((A + B)/2) cos ((A – B)/2), we get:
2 cos π/13 cos 9π/13 + cos 3π/13 + cos 5π/13
= 2 cos π/13 cos 9π/13 + [2 cos ((3π/13 + 5π/13)/2) cos ((3π/13 – 5π/13)/2)]
= 2 cos π/13 cos 9π/13 + [2 cos ((8π/13)/2) cos ((-2π/13)/2)]
= 2 cos π/13 cos 9π/13 + [2 cos 4π/13 cos (-π/13)]
= 2 cos π/13 cos 9π/13 + 2 cos 4π/13 cos π/13
= 2 cos π/13 (cos 9π/13 + cos 4π/13)
Using the identity cos A + cos B = 2 cos ((A + B)/2) cos ((A – B)/2), we get:
= 2 cos π/13 (cos 9π/13 + cos 4π/13)
= 2 cos π/13 [2 cos ((9π/13 + 4π/13)/2) cos ((9π/13 – 4π/13)/2)
= 2 cos π/13 [2 cos ((13π/13)/2) cos ((5π/13)/2)
= 2 cos π/13 2 cos π/2 cos 5π/26
We know that cos π/2 = 0
Thus, LHS = 2 cos π/13 × 0 × cos 5π/26 = 0 = RHS
Hence, proved.
2. (sin 3x + sin x) sin x + (cos 3x – cos x) cos x = 0
SOLUTION
LHS = (sin 3x + sin x) sin x + (cos 3x – cos x) cos x
= sin 3x sin x + sin2 x + cos 3x cos x – cos2 x
= cos 3x cos x + sin 3x sin x – (cos2 x – sin2 x)
Using the identities
cos A cos B + sin A sin B = cos (A – B)
cos2 A – sin2 A = cos 2A
we get:
cos 3x cos x + sin 3x sin x – (cos2 x – sin2 x)
= cos (3x – x) – (cos 2x)
= cos 2x – cos 2x = 0 = RHS
Hence, proved.
3. (cos x + cos y)2 + (sin x – sin y)2 = 4 cos2 ((x + y)/2)
SOLUTION
LHS = (cos x + cos y)2 + (sin x – sin y)2
= cos2 x + cos2 y + 2 cos x cos y + sin2 x + sin2 y – 2 sin x sin y
= [sin2 x + cos2 x] + [sin2 y + cos2 y] + 2 (cos x cos y – sin x sin y)
Using the identities
cos A cos B – sin A sin B = cos (A + B)
sin2 A + cos2 A = 1
we get:
[sin2 x + cos2 x] + [sin2 y + cos2 y] + 2 (cos x cos y – sin x sin y)
= 1 + 1 + 2 (cos (x + y))
= 2 + 2 (cos (x + y))
= 2 [1 + cos (x + y)]
Using the identity cos 2A = 2 cos2 A – 1, we get:
2 [1 + cos (x + y)]
= 2 [1 + 2 cos2 (x + y)/2 – 1]
= 2 [2 cos2 (x + y)/2]
= 4 cos2 ((x + y)/2) = RHS
Hence, proved.
4. (cos x – cos y)2 + (sin x – sin y)2 = 4 sin2 (x – y)/2
SOLUTION
LHS = (cos x – cos y)2 + (sin x – sin y)2
= cos2 x + cos2 y – 2 cos x cos y + sin2 x + sin2 y – 2 sin x sin y
= [sin2 x + cos2 x] + [sin2 y + cos2 y] – 2 (cos x cos y + sin x sin y)
Using the identities
cos A cos B + sin A sin B = cos (A – B)
sin2 A + cos2 A = 1
we get:
[sin2 x + cos2 x] + [sin2 y + cos2 y] – 2 (cos x cos y + sin x sin y)
= 1 + 1 – 2 (cos (x – y))
= 2 – 2 (cos (x – y))
= 2 [1 – cos (x – y)]
Using the identity cos 2A = 1 – 2 sin2 A, we get:
2 [1 – cos (x – y)]
= 2 [1 – 1 + 2 sin2 (x – y)/2]
= 2 [2 sin2 (x – y)/2]
= 4 sin2 ((x – y)/2) = RHS
Hence, proved.
5. sin x + sin 3x + sin 5x + sin 7x = 4 cos x cos 2x sin 4x
SOLUTION
LHS = sin x + sin 3x + sin 5x + sin 7x
= (sin x + sin 5x) + (sin 3x + sin 7x)
Using the identity sin A + sin B = 2 sin ((A + B)/2) cos ((A – B)/2), we get:
(sin x + sin 5x) + (sin 3x + sin 7x)
= [2 sin ((x + 5x)/2) cos ((x – 5x)/2)] + [2 sin ((3x + 7x)/2) cos ((3x – 7x)/2)]
= [2 sin ((6x)/2) cos ((-4x)/2)] + [2 sin ((10x)/2) cos ((-4x)/2)]
= [2 sin 3x cos (-2x)] + [2 sin 5x cos (-2x)]
= 2 sin 3x cos 2x + 2 sin 5x cos 2x
= 2 cos 2x (sin 3x + sin 5x)
Using the identity sin A + sin B = 2 sin ((A + B)/2) cos ((A – B)/2), we get:
2 cos 2x (sin 3x + sin 5x)
= 2 cos 2x [2 sin ((3x + 5x)/2) cos ((3x – 5x)/2)]
= 2 cos 2x [2 sin ((8x)/2) cos ((-2x)/2)]
= 2 cos 2x [2 sin 4x cos (-x)]
= 2 cos 2x (2 sin 4x cos x)
= 4 cos x cos 2x sin 4x= RHS
Hence, proved.
6. ((sin 7x + sin 5x) + (sin 9x + sin 3x))/((cos 7x + cos 5x) + (cos 9x + cos 3x)) = tan 6x
SOLUTION
LHS = ((sin 7x + sin 5x) + (sin 9x + sin 3x))/((cos 7x + cos 5x) + (cos 9x + cos 3x))
Using the identities
sin A + sin B = 2 sin ((A + B)/2) cos ((A – B)/2)
cos A + cos B = 2 cos ((A + B)/2) cos ((A – B)/2)
we get:
((sin 7x + sin 5x) + (sin 9x + sin 3x))
= 2 sin ((7x + 5x)/2) cos ((7x – 5x)/2) + 2 sin ((9x + 3x)/2) cos ((9x – 3x)/2)
= 2 sin ((12x)/2) cos ((2x)/2) + 2 sin ((12x)/2) cos ((6x)/2)
= 2 sin 6x cos x + 2 sin 6x cos 3x
= 2 sin 6x (cos x + cos 3x)
((cos 7x + cos 5x) + (cos 9x + cos 3x))
= 2 cos ((7x + 5x)/2) cos ((7x – 5x)/2) + 2 cos ((9x + 3x)/2) cos ((9x – 3x)/2)
= 2 cos ((12x)/2) cos ((2x)/2) + 2 cos ((12x)/2) cos ((6x)/2)
= 2 cos 6x cos x + 2 cos 6x cos 3x
= 2 cos 6x (cos x + cos 3x)
Now,
((sin 7x + sin 5x) + (sin 9x + sin 3x))/((cos 7x + cos 5x) + (cos 9x + cos 3x))
= 2 sin 6x (cos x + cos 3x)/2 cos 6x (cos x + cos 3x)
= sin 6x/cos 6x = tan 6x = RHS
Hence, proved.
7. sin 3x + sin 2x – sin x = 4 sin x cos x/2 cos 3x/2
SOLUTION
LHS = sin 3x + sin 2x – sin x
Using the identity sin A – sin B = 2 cos ((A + B)/2) sin ((A – B)/2), we get:
sin 3x + (sin 2x – sin x)
= sin 3x + [2 cos ((2x + x)/2) sin ((2x – x)/2)]
= sin 3x + [2 cos ((3x)/2) sin ((x)/2)]
= sin 3x + [2 cos ((3x)/2) sin ((x)/2)]
Using the indentity sin 2A = 2 sin A cos A, we get:
sin 3x + [2 cos ((3x)/2) sin ((x)/2)]
= 2 sin 3x/2 cos 3x/2 + [2 cos ((3x)/2) sin ((x)/2)]
= 2 cos 3x/2 (sin 3x/2 + sin x/2)
Using the identity sin A + sin B = 2 sin ((A + B)/2) cos ((A – B)/2), we get:
2 cos 3x/2 (sin 3x/2 + sin x/2)
= 2 cos 3x/2 (2 sin ((3x/2 + x/2)/2) cos ((3x/2 – x/2)/2))
= 2 cos 3x/2 (2 sin ((4x/2)/2) cos ((2x/2)/2))
= 2 cos 3x/2 (2 sin x cos x/2)
= 4 sin x cos x/2 cos 3x/2 = RHS
Hence, proved.
Find sin x/2, cos x/2 and tan x/2 in each of the following:
8. tan x = -4/3, x in quadrant II
SOLUTION
It is given that x is in quadrant II. Therefore,
π/2 < x < π
Divide by 2
π/4 < x/2 < π/2
x/2 lies in quadrant I, so sin x/2, cos x/2, and tan x/2 are all positive.
We know that sec2 A = 1 + tan2 A, so
sec2 x = 1 + tan2 x
sec2 x = 1 + (-4/3)2
sec2 x = 1 + 16/9
sec2 x = 25/9
sec x = ±5/3
cos x = ±3/5
cos x = -3/5 as x is in quadrant II.
We know that cos2A = 2 cos2 A – 1, so
cos x = 2 cos2 x/2 – 1
-3/5 = 2 cos2 x/2 – 1
2/5 = 2 cos2 x/2
1/5 = cos2 x/2
cos x/2 = 1/√5
Now,
sin2 x/2 + cos2 x/2 = 1
sin2 x/2 + (1/√5)2 = 1
sin2 x/2 = 1 – 1/5
sin2 x/2 = 4/5
sin x/2 = 2/√5
Now,
tan x/2 = sin x/2/cos x/2
= 2/√5 × √5/1
tan x/2 = 2
9. cos x = -1/3, x in quadrant III
SOLUTION
It is given that x is in quadrant III. Therefore,
π < x < 3π/2
Divide by 2
π/2 < x/2 < 3π/4
x/2 lies in quadrant II, so cos x/2, and tan x/2 are negative whereas sin x/2 is postive.
We know that cos2A = 1 – 2 sin2 A, so
cos x = 1 – 2 sin2 x/2
-1/3 = 1 – 2 sin2 x/2
2 sin2 x/2 =2/3
sin2 x/2 = 2/3
sin x/2 = √2/√3
We know that cos2A = 2 cos2 A – 1, so
cos x = 2 cos2 x/2 – 1
-1/3 = 2 cos2 x/2 – 1
2/3 = 2 cos2 x/2
1/3 = cos2 x/2
cos x/2 = -1/√3
Now,
tan x/2 = sin x/2/cos x/2
= √2/√3 × -√3/1
tan x/2 = -√2
10. sin x = 1/4, x in quadrant II
SOLUTION
It is given that x is in quadrant II. Therefore,
π/2 < x < π
Divide by 2
π/4 < x/2 < π/2
x/2 lies in quadrant I, so sin x/2, cos x/2, and tan x/2 are all positive.
We know that cos2 A = 1 – sin2 A, so
cos2 x = 1 – (1/4)2
cos2x = 1 – 1/16
cos2 x = 15/16
cos x = ±√15/4
cos x = -√15/4 as x is in quadrant II.
We know that cos2A = 2 cos2 A – 1, so
cos x = 2 cos2 x/2 – 1
-√15/4 = 2 cos2 x/2 – 1
(4 – √15)/4 = 2 cos2 x/2
(4 – √15)/8 = cos2 x/2
cos x/2 = √(4 – √15)/2√2
Now,
sin2 x/2 + cos2 x/2 = 1
sin2 x/2 + (√(4 – √15)/2√2)2 = 1
sin2 x/2 = 1 – (4 – √15)/8
sin2 x/2 = (4 + √15)/8
sin x/2 = √(4 + √15)/2√2
Now,
tan x/2 = sin x/2/cos x/2
= √(4 + √15)/2√2 × 2√2/√(4 – √15)
tan x/2 = √(4 + √15)/√(4 – √15)
NCERT Solutions for Class 11 Maths Chapter 3 Trigonometric Functions
This chapter has 6 exercises and a miscellaneous exercise to help students understand the concepts related to Trigonometric Functions clearly. ANAND CLASSES (A School Of Competitions) provides all the concepts and solutions for Chapter 3 of Class 11 Maths with clear explanations and formulas. The PDF of Maths NCERT Solutions for Class 11 Chapter 3 includes the topics and sub-topics listed below.
3.1 Introduction
The basic trigonometric ratios and identities are given here, along with the applications of trigonometric ratios in solving the word problems related to heights and distances.
3.2 Angles
3.2.1 Degree measure
3.2.2 Radian measure
3.2.3 Relation between radian and real numbers
3.2.4 Relation between degree and radian
In this section, different terms related to trigonometry are discussed, such as terminal side, initial sides, measuring an angle in degrees and radian, etc.
3.3 Trigonometric Functions
3.3.1 Sign of trigonometric functions
3.3.2 Domain and range of trigonometric functions
After studying this section, students are able to understand the generalised trigonometric functions with signs. Also, they can gain knowledge on domain and range of trigonometric functions with examples.
3.4 Trigonometric Functions of Sum and Difference of Two Angles
This section contains formulas related to the sum and difference of two angles in trigonometric functions.
Key Features of NCERT Solutions for Class 11 Maths Chapter 3 Trigonometric Functions
Studying the Trigonometric Functions of Class 11 enables the students to understand the following:
- Introduction to Trigonometric Functions
- Positive and negative angles
- Measuring angles in radians and in degrees and conversion of one into other
- Definition of trigonometric functions with the help of unit circle
- Truth of the sin 2x + cos 2x = 1, for all x
- Signs of trigonometric functions
- Domain and range of trigonometric functions
- Graphs of Trigonometric Functions
- Expressing sin (x±y) and cos (x±y) in terms of sin x, sin y, cos x & cosy and their simple application, identities related to sin 2x, cos 2x, tan 2x, sin 3x, cos 3x and tan 3x
- The general solution of trigonometric equations of the type sin y = sin a, cos y = cos a and tan y = tan a
Frequently Asked Questions on NCERT Solutions for Class 11 Maths Chapter 3
Q1
What are the topics discussed in Chapter 3 of NCERT Solutions for Class 11 Maths, as per the latest update of the CBSE Syllabus?
The topics discussed in Chapter 3 of NCERT Solutions for Class 11 Maths, as per the latest CBSE Syllabus (2023-24) are:
1. Introduction
2. Angles
3. Trigonometric Functions
4. Trigonometric Functions of sum and difference of two angles
Q2
How many exercises are there in Chapter 3 of NCERT Solutions for Class 11 Maths?
There are 4 exercises and one miscellaneous exercise in Chapter 3 of NCERT Solutions for Class 11 Maths. The number of questions in each exercise are mentioned below.
Exercise 3.1 – 7 Questions
Exercise 3.2 – 10 Questions
Exercise 3.3 – 25 Questions
Exercise 3.4 – 9 Questions
Miscellaneous Exercise – 10 Questions
Q3
What will I learn in Chapter 3 Trigonometric Functions of NCERT Solutions for Class 11 Maths?
Chapter 3 Trigonometric Functions of NCERT Solutions for Class 11 Maths covers the complex topics of trigonometric functions and their uses. This chapter consists of 4 sub-sections which deal with topics like measuring angles in radians and degrees and their interconversion. These concepts are explained in a detailed manner to improve logical thinking abilities among students.
- NCERT Solutions for Class 11 Maths Trigonometric Functions
- Trigonometric Functions Class 11 NCERT PDF Download
- Class 11 Maths Chapter Trigonometric Functions Solutions
- NCERT Trigonometric Functions Questions and Answers
- Trigonometric Functions NCERT Exercises Solutions
- Important Questions on Trigonometric Functions for JEE
- NCERT Class 11 Maths Trigonometry PDF Free Download
- Trigonometric Identities and Functions for Class 11
- Step-by-Step NCERT Solutions for Trigonometry
- Trigonometric Formulas and Examples for JEE Preparation