Complex Numbers Class 11 Questions with Solutions
1. Write the complex number i9 + i19 in the form of a + ib.
Solutions:
Given number: i9 + i19.
The expression i9 + i19 can be represented as follows:
i9 + i19 = (i2)4. i + (i2)9. i …(1)
We know that, i2 = 1.
On substituting i2 = -1, we get
i9 + i19 = (-1)4.i + (-1)9.i
i9 + i19 = 1.i + (-1).i
i9 + i19 = i – i
i9 + i19 = 0.
Therefore, i9 + i19 in the form of a + ib is 0 + i0.
2. Simplify the expression: i30 + i40 + i60.
Solutions:
Given expression: i30 + i40 + i60.
The given expression can be simplified as follows:
i30 + i40 + i60 = (i4)7. i2 + (i4)10 + (i4)15.
We know that the value of i4 is 1.
i30 + i40 + i60 = (1)7. i2 + (1)10 + (1)15.
i30 + i40 + i60 = (1)i2 + 1 + 1
i30 + i40 + i60 = -1 + 1 + 1 [since i2 = 1]
i30 + i40 + i60 = 1
Therefore, the simplification of i30 + i40 + i60 is 1.
3. Express the given expression (1 + i) (1 + 2i) in the form a + ib and find the values of a and b.
Solutions:
Given expression: (1 + i) (1 + 2i)
Hence, (1 + i) (1 + 2i) = 1(1) + 1(2i) + i + 2i(i)
(1 + i) (1 + 2i) = 1 + 2i + i + 2i2
(1 + i) (1 + 2i) = 1 + 2i + i + 2(-1) [As, i2 = -1]
(1 + i) (1 + 2i) = 1 + 2i + i – 2
(1 + i) (1 + 2i) = -1 + 3i
Hence, the expression (1 + i) (1 + 2i) in the form of a + bi is -1 + 3i.
Thus, the value of a = -1 and b = 3.
4. Solve the equation: 2x2 + x + 1 = 0
Solutions:
Given equation: 2x2 + x + 1 = 0 …(1)
Now, compare the given equation with the standard quadratic equation ax2 + bx + c = 0 …(b)
On comparing the equations (1) and (2), we get
a = 2, b = 1 and c = 1.
As we know discriminant, D = b2 – 4ac …(3)
Substitute the values a, b and c in equation (3), we get
D = (1)2 – 4(2)(1)
D = 1 – 8
D = -7
We know that the quadratic equation formula is:
\(\begin{array}{l}x = \frac{-b\pm \sqrt{D}}{2a}\end{array} \)
\(\begin{array}{l}x = \frac{-1\pm \sqrt{-7}}{2\times 2}\end{array} \)
Now, the above equation can be written as
\(\begin{array}{l}x = \frac{-1\pm \sqrt{-1 \times 7}}{2\times 2}\end{array} \)
Since, √-1 = i,
\(\begin{array}{l}x = \frac{-1\pm \sqrt{7i}}{4}\end{array} \)
Hence, the solutions to the given quadratic equation are:
\(\begin{array}{l}x = \frac{-1 + \sqrt{7i}}{4}, and\ x = \frac{-1 – \sqrt{7i}}{4}\end{array} \)
5. Determine the multiplicative inverse of 4 – 3i.
Solutions:
Let z = 4 – 3i.
The conjugate of 4 – 3i is 4 + 3i.
As we know, the multiplicative inverse of z is 1/z.
Hence, 1/z = 1/ (4+3i)
Therefore, the multiplicative inverse of 4 – 3i is:
\(\begin{array}{l}z^{-1} = \frac{1}{4-3i}\times \frac{4+3i}{4+3i}\end{array} \)
\(\begin{array}{l}z^{-1} = \frac{4+3i}{4^{2}-(3i)^{2}}\end{array} \)
\(\begin{array}{l}z^{-1} = \frac{4+3i}{16 – 9i^{2}}\end{array} \)
As, i2 = -1
\(\begin{array}{l}z^{-1} = \frac{4+3i}{16 +9}\end{array} \)
\(\begin{array}{l}z^{-1} = \frac{4+3i}{25}\end{array} \)
Therefore, the multiplicative inverse of 4 – 3i is (4 + 3i)/25.
6. If z1 and z2 are the two complex numbers, then show that Re (z1z2) = Re z1 Re z2 – Im z1 Im z2.
Solutions:
Let z1 = a1 + ib1 and z2 = a2+ ib2
Now, take the product of these two complex numbers.
z1z2 = (a1 + ib1)(a2+ ib2)
z1z2 = a1(a2+ ib2) + ib1(a2+ ib2)
z1z2 = a1a2 + ia1b2 + ia2b1 + i2b1b2
z1z2 = a1a2 + ia1b2 + ia2b1 – b1b2 [since i2 = -1]
Now, the above equation can be rearranged as follows:
z1z2 = a1a2 – b1b2 + ia1b2 + ia2b1
z1z2 = (a1a2 – b1b2) + i(a1b2 + a2b1)
Here, the real part is:
Re (z1z2) = a1a2 – b1b2
Thus,
Re (z1z2) = Re z1 Re z2 – Im z1 Im z2.
Hence, Re (z1z2) = Re z1 Re z2 – Im z1 Im z2 is proved.
Also, read: Imaginary Numbers.
7. Determine the modulus and arguments of 1 – i. Also, find its polar form.
Solutions:
Given expression: 1 – i.
The complex number z = a + ib in polar form is given as z = |z| (cos θ + i sin θ) …(1)
Let z = 1 – i
Finding Modulus of 1 – i:
|z| = √(a2 + b2)
|z| = √(12 + (-1)2)
|z| = √(1+1)
|z| = √2.
Hence, the modulus of 1 – i is √2.
Finding Argument of 1 – i:
θ = arg (z) = tan-1 (|b”https://byjus.com/”a|)
Here, |b| = 1 and |a| = 1.
Hence, θ = arg (z) = tan-1 (1/1)
θ = arg (z) = tan-1 1
Hence, θ = -π/4 radian [ As x > 0, y < 0, the complex number lies in fourth quadrant]
Now, substitute the values in (1), we get
Polar form, z = √2 (cos (-π/4) + i sin (-π/4))
z = √2 (cos (π/4) – i sin (π/4))
Therefore, the polar form of 1 – i is equal to √2 (cos (π/4) – i sin (π/4)).
8. Compute the value of (1-i)n [1- (1/i)]n for a positive integer “n”.
Solutions:
Given: (1 – i)n [1- (1/i)]n
We know that i4 = 1,
Hence, (1 – i)n [1- (1/i)]n = (1 – i)n [1- (i4/i)]n
(1 – i)n [1- (1/i)]n = (1 – i)n [1 – i3]n
Further, the above equation is written as follows:
(1 – i)n [1- (1/i)]n = (1 – i)n (1 + i)n [Since i3 = -i]
(1 – i)n [1- (1/i)]n = [(1 – i) (1 + i)]n
The expression (1 – i) (1 + i) is of the form (a – b)(a + b), which is equal to a2 – b2.
Here, a = 1, b = 1
Thus, (1 – i)n [1- (1/i)]n = (1 – i2)n
(1 – i)n [1- (1/i)]n = ( 1 – (-1))n [As, i2 = -1]
(1 – i)n [1- (1/i)]n = (1 + 1)n
(1 – i)n [1- (1/i)]n = 2n.
Therefore, the value of (1 – i)n [1- (1/i)]n is 2n.
9. Solve the given equation: |z| = z + 1 + 2i.
Solutions:
Given equation: |z| = z + 1 + 2i.
Let z = a + ib
Hence, the given equation becomes:
|a + ib| = (a + ib) + 1 + 2i
√(a2 + b2) = (a + 1) + i (b + 2) …(1)
Now, compare the real and imaginary parts,
Real part: √(a2 + b2) = a + 1 …(2)
Imaginary part: 0 = b + 2
Hence, b = -2 …(3)
Now, substitute b = -2 in (2), we get
√(a2 + (-2)2) = a + 1
Now, take squares on both sides, we get
a2 + 4 = (a+ 1)2
a2 + 4 = a2 + 1 + 2a
4 = 1 + 2a
2a = 4 – 1
2a = 3
Hence, a = 3/2 …(4)
Hence, the complex number, z = (3/2) -2i.
10. Show that arg (z1/z4) + arg (z2/z3) = 0, if z1, z2 and z3 and z4 are the two pairs of conjugate complex numbers.
Solutions:
Given that,
\(\begin{array}{l}z_{1} = \bar{z_{2}}…(1)\end{array} \)
\(\begin{array}{l}z_{3} = \bar{z_{4}} …(2)\end{array} \)
As we know, arg (z1/z2) = arg (z1) – arg (z2)
Hence, (z1/z4) + arg (z2/z3) = arg (z1) – arg (z4) + arg (z2) – arg (z3)
arg (z1/z4) + arg (z2/z3) = arg (z1) + arg (z2) – arg (z4) – arg (z3)
arg (z1/z4) + arg (z2/z3) = [arg (z1) + arg (z2)] – [arg (z4) + arg (z3)]
Using (1) and (2), we can write
\(\begin{array}{l}arg(z_{1}/z_{4}) + arg (z_{2}/z_{3}) = [arg(\bar{z_{2}})+ arg(z_{2})] – [arg(\bar{z_{4}})+ arg(z_{4})]\end{array} \)
\(\begin{array}{l}Since,\ arg(z)+arg (\bar{z})= 0\end{array} \)
arg (z1/z4) + arg (z2/z3) = 0 – 0
arg (z1/z4) + arg (z2/z3) = 0
Hence, arg (z1/z4) + arg (z2/z3) = 0 is proved.
Practice Questions
Solve the following complex numbers class 11 questions.
- Write the expression i-39 in the form of a + ib.
- Solve the equation: √2x2 + x + √2 = 0.
- Write the given complex number in the polar form: (1 + 2i) / (1 – 3i).