Directive Influence of Functional Group | Substituted Benzene, Ortho-para-meta directing group

When mono substituted benzene undergoes an electrophilic attack, the rate of reaction and the site of attack vary with the functional group already attached to it. Some groups increase the reactivity of benzene ring and are known as activating groups while others which decrease the reactivity are known as deactivating groups.

We further divide these groups into two categories depending on the way they influence the orientation of attack by the incoming electrophile.

Those which increase the electron density at ”ortho” and “para” positions are known as ortho-para directors while those which increase the electron density at “meta” position are known as meta directors.

Some examples of directive influence of functional group in mono substituted benzene are explained below:

Ortho-Para Directing Group

As discussed earlier, these groups direct the electrophilic attack on “ortho” and “para” positions. All activating groups are “ortho-para” directors, for example –NH2, –NHR, –NHCOCH3, –OCH3,–CH3, –C2H5, etc.

When mono substituted benzene undergoes an electrophilic attack, the rate of reaction and the site of attack vary with the functional group already attached to it. Some groups increase the reactivity of benzene ring and are known as activating groups while others which decrease the reactivity are known as deactivating groups.

From the figure, it is quite evident that the electron density at ortho and para position increases due to the resonance of benzene ring. Therefore, phenols have high affinity for electrophilic attack at “ortho” and “para” positions. As a result, we can say that “–OH” group is an ortho-para director. Due to the resonance in the benzene ring, electron density at “ortho” and “para” position increases as compared to the “meta” position. As a result, halogens too are ortho-para directors, irrespective of the fact that they are deactivators due to “-I” effect.

Meta Directing Groups

These groups direct the electrophilic attack on “meta” positions of the associated benzene ring. Generally deactivating groups are meta directors, for example –NO2, –CN, –CHO, –COR, –COOH, –COOR, –SO3H, etc.

When mono substituted benzene undergoes an electrophilic attack, the rate of reaction and the site of attack vary with the functional group already attached to it. Some groups increase the reactivity of benzene ring and are known as activating groups while others which decrease the reactivity are known as deactivating groups.

Nitro group is a ring deactivating group; they decrease the electron density of the benzene ring attached. As we can see from the figure the electron density at “meta” position is quite high in comparison to “ortho” and “para” position.

Hence, these groups facilitate electrophilic substitution of the ring at “meta” positions and are called meta directors.

Er. Neeraj K.Anand is a freelance mentor and writer who specializes in Engineering & Science subjects. Neeraj Anand received a B.Tech degree in Electronics and Communication Engineering from N.I.T Warangal & M.Tech Post Graduation from IETE, New Delhi. He has over 30 years of teaching experience and serves as the Head of Department of ANAND CLASSES. He concentrated all his energy and experiences in academics and subsequently grew up as one of the best mentors in the country for students aspiring for success in competitive examinations. In parallel, he started a Technical Publication "ANAND TECHNICAL PUBLISHERS" in 2002 and Educational Newspaper "NATIONAL EDUCATION NEWS" in 2014 at Jalandhar. Now he is a Director of leading publication "ANAND TECHNICAL PUBLISHERS", "ANAND CLASSES" and "NATIONAL EDUCATION NEWS". He has published more than hundred books in the field of Physics, Mathematics, Computers and Information Technology. Besides this he has written many books to help students prepare for IIT-JEE and AIPMT entrance exams. He is an executive member of the IEEE (Institute of Electrical & Electronics Engineers. USA) and honorary member of many Indian scientific societies such as Institution of Electronics & Telecommunication Engineers, Aeronautical Society of India, Bioinformatics Institute of India, Institution of Engineers. He has got award from American Biographical Institute Board of International Research in the year 2005.