Relations & Functions Exercise 2.1 NCERT Solutions for Class 11 Maths Chapter 2 Free PDF Download

NCERT Solutions for Class 11 – Chapter 2 Relations and Functions – Exercise 2.1

This section provides detailed solutions for Exercise 2.1 from Chapter 2 of the Class 11 NCERT Mathematics textbook. The exercise includes problems in identifying and representing relations and functions, determining the domain and range, and working with function notation. The solutions are presented step-by-step to help students understand the methods for solving these problems and applying the concepts of relations and functions effectively.

Exercise 2.1

1. If (x/3 + 1, y – 2/3) = (5/3, 1/3) find the values of x and y.

Solution:

Given, (x/3 + 1, y – 2/3) = (5/3, 1/3)

As the ordered pairs are equal, the corresponding elements should also be equal. Thus,

x/3 + 1 = 5/3 and y – 2/3 = 1/3

Solving, we get

x + 3 = 5 and 3y – 2 = 1 [Taking L.C.M. and adding]

x = 2 and 3y = 3

Therefore, x = 2 and y = 1

2. If set A has 3 elements and set B = {3, 4, 5}, then find the number of elements in (A × B).

Solution:

Given, set A has 3 elements, and the elements of set B are {3, 4, and 5}.

So, the number of elements in set B = 3

Then, the number of elements in (A × B) = (Number of elements in A) × (Number of elements in B) = 3 × 3 = 9

Therefore, the number of elements in (A × B) will be 9.

3. If G = {7, 8} and H = {5, 4, 2}, find G × H and H × G.

Solution:

Given, G = {7, 8} and H = {5, 4, 2}

We know that,

The Cartesian product of two non-empty sets P and Q is given as

P × Q = {(pq): p ∈ P, q ∈ Q}

So,

G × H = {(7, 5), (7, 4), (7, 2), (8, 5), (8, 4), (8, 2)}

H × G = {(5, 7), (5, 8), (4, 7), (4, 8), (2, 7), (2, 8)}

4. State whether each of the following statements is true or false. If the statement is false, rewrite the given statement correctly.

(i) If P = {mn} and Q = {nm}, then P × Q = {(mn), (nm)}

(ii) If A and B are non-empty sets, then A × B is a non-empty set of ordered pairs (xy) such that x ∈ A and y ∈ B.

(iii) If A = {1, 2}, B = {3, 4}, then A × (B ∩ Φ) = Φ

Solution:

(i) The statement is false. The correct statement is

If P = {mn} and Q = {nm}, then

P × Q = {(mm), (mn), (n, m), (nn)}

(ii) True

(iii) True

5. If A = {–1, 1}, find A × A × A.

Solution:

The A × A × A for a non-empty set A is given by

A × A × A = {(abc): ab∈ A}

Here, it is given A = {–1, 1}

So,

A × A × A = {(–1, –1, –1), (–1, –1, 1), (–1, 1, –1), (–1, 1, 1), (1, –1, –1), (1, –1, 1), (1, 1, –1), (1, 1, 1)}

6. If A × B = {(ax), (ay), (bx), (by)}. Find A and B.

Solution:

Given,

A × B = {(ax), (a, y), (bx), (by)}

We know that the Cartesian product of two non-empty sets, P and Q is given by:

P × Q = {(pq): p ∈ P, q ∈ Q}

Hence, A is the set of all first elements, and B is the set of all second elements.

Therefore, A = {ab} and B = {xy}

7. Let A = {1, 2}, B = {1, 2, 3, 4}, C = {5, 6} and D = {5, 6, 7, 8}. Verify that

(i) A × (B ∩ C) = (A × B) ∩ (A × C)

(ii) A × C is a subset of B × D

Solution:

Given,

A = {1, 2}, B = {1, 2, 3, 4}, C = {5, 6} and D = {5, 6, 7, 8}

(i) To verify: A × (B ∩ C) = (A × B) ∩ (A × C)

Now, B ∩ C = {1, 2, 3, 4} ∩ {5, 6} = Φ

Thus,

L.H.S. = A × (B ∩ C) = A × Φ = Φ

Next,

A × B = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4)}

A × C = {(1, 5), (1, 6), (2, 5), (2, 6)}

Thus,

R.H.S. = (A × B) ∩ (A × C) = Φ

Therefore, L.H.S. = R.H.S.

Hence verified

(ii) To verify: A × C is a subset of B × D

First,

A × C = {(1, 5), (1, 6), (2, 5), (2, 6)}

And,

B × D = {(1, 5), (1, 6), (1, 7), (1, 8), (2, 5), (2, 6), (2, 7), (2, 8), (3, 5), (3, 6), (3, 7), (3, 8), (4, 5), (4, 6), (4, 7), (4, 8)}

Now, it’s clearly seen that all the elements of set A × C are the elements of set B × D.

Thus, A × C is a subset of B × D.

Hence verified

8. Let A = {1, 2} and B = {3, 4}. Write A × B. How many subsets will A × B have? List them.

Solution:

Given,

A = {1, 2} and B = {3, 4}

So,

A × B = {(1, 3), (1, 4), (2, 3), (2, 4)}

Number of elements in A × B is n(A × B) = 4

We know that,

If C is a set with n(C) = m, then n[P(C)] = 2m.

Thus, the set A × B has 24 = 16 subsets.

And these subsets are as given below:

Φ, {(1, 3)}, {(1, 4)}, {(2, 3)}, {(2, 4)}, {(1, 3), (1, 4)}, {(1, 3), (2, 3)}, {(1, 3), (2, 4)}, {(1, 4), (2, 3)}, {(1, 4), (2, 4)}, {(2, 3), (2, 4)}, {(1, 3), (1, 4), (2, 3)}, {(1, 3), (1, 4), (2, 4)}, {(1, 3), (2, 3), (2, 4)}, {(1, 4), (2, 3), (2, 4)}, {(1, 3), (1, 4), (2, 3), (2, 4)}

9. Let A and B be two sets such that n(A) = 3 and n (B) = 2. If (x, 1), (y, 2), (z, 1) are in A × B, find A and B, where xy and z are distinct elements.

Solution:

Given,

n(A) = 3 and n(B) = 2; and (x, 1), (y, 2), (z, 1) are in A × B.

We know that,

A = Set of first elements of the ordered pair elements of A × B

B = Set of second elements of the ordered pair elements of A × B

So, clearly, xy, and z are the elements of A; and

1 and 2 are the elements of B.

As n(A) = 3 and n(B) = 2, it is clear that set A = {xyz} and set B = {1, 2}

10. The Cartesian product A × A has 9 elements among which are found (–1, 0) and (0, 1). Find the set A and the remaining elements of A × A.

Solution:

We know that,

If n(A) = and n(B) = q, then n(A × B) = pq.

Also, n(A × A) = n(A) × n(A)

Given,

n(A × A) = 9

So, n(A) × n(A) = 9

Thus, n(A) = 3

Also, given that the ordered pairs (–1, 0) and (0, 1) are two of the nine elements of A × A.

And, we know in A × A = {(a, a): a ∈ A}

Thus, –1, 0, and 1 have to be the elements of A.

As n(A) = 3, clearly A = {–1, 0, 1}

Hence, the remaining elements of set A × A are as follows:

(–1, –1), (–1, 1), (0, –1), (0, 0), (1, –1), (1, 0), and (1, 1)

FAQs on Relation And Functions

What is a relation in mathematics?

A relation in mathematics is a set of ordered pairs where each element of one set is associated with elements of another set. For example, if A={1,2,3}and B={a,b} a relation from A to B could be {(1,a),(2,b),(3,a)}

How do you represent a function graphically?

A function can be represented graphically using a coordinate plane where the x-axis represents the input values (domain) and the y-axis represents the output values (range). The function’s graph shows the relationship between the inputs and outputs.

How do you find the domain and range of a function?

The domain of a function is the set of all possible input values (x-values) for which the function is defined. The range is the set of all possible output values (y-values) that the function can produce. To find these, identify all permissible values for the input and determine the corresponding output values.

What is the difference between a relation and a function?

A relation can have multiple outputs for a single input, while a function has exactly one output for each input. In other words, functions are a subset of relations where each input has a unique output.

Relations and Functions NCERT Solutions for Class 11 Maths Chapter 2 Free PDF Download

NCERT Solutions for Class 11 Maths Chapter 2 Relations and Functions are solved in detail in the PDF given below. All the solutions to the problems in the exercises are created in such a way that it enables the students to prepare for the exam and ace it. The NCERT Solutions are prepared by the most experienced teachers in the education space, making the explanation of each solution simple, understandable, and according to the latest CBSE Syllabus. The solution helps Class 11 students to master the concept of Relations and Functions.

The solutions provide a good understanding of the fundamental concepts before they solve the equations. Through regular practice, students will know the difference between relations and functions, which are included under the syllabus, and become well-versed in its concepts. Numerous examples are present in the textbook before the exercise questions to help them understand the methodologies to be followed while solving the problems. Referring to the NCERT Class 11 Solutions PDF, students can get a glimpse of the important concepts before facing their final exams.

Er. Neeraj K.Anand is a freelance mentor and writer who specializes in Engineering & Science subjects. Neeraj Anand received a B.Tech degree in Electronics and Communication Engineering from N.I.T Warangal & M.Tech Post Graduation from IETE, New Delhi. He has over 30 years of teaching experience and serves as the Head of Department of ANAND CLASSES. He concentrated all his energy and experiences in academics and subsequently grew up as one of the best mentors in the country for students aspiring for success in competitive examinations. In parallel, he started a Technical Publication "ANAND TECHNICAL PUBLISHERS" in 2002 and Educational Newspaper "NATIONAL EDUCATION NEWS" in 2014 at Jalandhar. Now he is a Director of leading publication "ANAND TECHNICAL PUBLISHERS", "ANAND CLASSES" and "NATIONAL EDUCATION NEWS". He has published more than hundred books in the field of Physics, Mathematics, Computers and Information Technology. Besides this he has written many books to help students prepare for IIT-JEE and AIPMT entrance exams. He is an executive member of the IEEE (Institute of Electrical & Electronics Engineers. USA) and honorary member of many Indian scientific societies such as Institution of Electronics & Telecommunication Engineers, Aeronautical Society of India, Bioinformatics Institute of India, Institution of Engineers. He has got award from American Biographical Institute Board of International Research in the year 2005.

CBSE Class 11 Maths Syllabus for 2023-24 with Marking Scheme

CBSE syllabus for class 11 Maths is divided into 5 units. The table below shows the units, number of periods and marks allocated for maths subject. The maths theory paper is of 80 marks and the internal assessment is of 20 marks.

No.UnitsMarks
I.Sets and Functions23
II.Algebra25
III.Coordinate Geometry12
IV.Calculus08
V.Statistics and Probability12
Total Theory80
Internal Assessment20
Grand Total100

2025-26 CBSE Class 11 Maths Syllabus

Below you will find the CBSE Class Maths Syllabus for students.

Unit-I: Sets and Functions

1. Sets

Sets and their representations, empty sets, finite and infinite sets, equal sets, subsets, and subsets of a set of real numbers, especially intervals (with notations), universal set, Venn diagrams, union and intersection of sets, difference of sets, complement of a set and properties of complement.

2. Relations & Functions

Ordered pairs, Cartesian product of sets, number of elements in the Cartesian product of two finite sets, Cartesian product of the set of reals with itself (upto R x R x R), definition of relation, pictorial diagrams, domain, co-domain and range of a relation. Function as a special type of relation. Pictorial representation of a function, domain, co-domain and range of a function. Real valued functions, domain and range of these functions, constant, identity, polynomial, rational, modulus, signum, exponential, logarithmic and greatest integer functions, with their graphs. Sum, difference, product and quotients of functions.

3. Trigonometric Functions

Positive and negative angles, measuring angles in radians and in degrees and conversion from one measure to another, definition of trigonometric functions with the help of unit circle, truth of the identity, signs of trigonometric functions, domain and range of trigonometric functions and their graphs, expressing sin (x±y) and cos (x±y) in terms of sinx, siny, cosx & cosy and their simple applications.

Unit-II: Algebra

1. Complex Numbers and Quadratic Equations

Need for complex numbers, especially√−1, to be motivated by the inability to solve some of the quadratic equations. Algebraic properties of complex numbers, Argand plane.

2. Linear Inequalities

Linear inequalities, algebraic solutions of linear inequalities in one variable and their representation on the number line.

3. Permutations and Combinations

The fundamental principle of counting. Factorial n. (n!) Permutations and combinations, derivation of Formulae for nPr and nCr and their connections, simple applications.

4. Binomial Theorem

Historical perspective, statement and proof of the binomial theorem for positive integral indices, Pascal’s triangle, simple applications.

5. Sequence and Series

Sequence and series, arithmetic progression (A. P.), arithmetic mean (A.M.),  geometric progression (G.P.), general term of a G.P., sum of n terms of a G.P., infinite G.P. and its sum, geometric mean (G.M.), relation between A.M. and G.M.

Unit-III: Coordinate Geometry

1. Straight Lines

Brief recall of two-dimensional geometry from earlier classes. Slope of a line and angle between two lines. Various forms of equations of a line: parallel to axis, point-slope form, slope-intercept form, two-point form, intercept form and normal form. General equation of a line. Distance of a point from a line.

2. Conic Sections

Sections of a cone: circles, ellipse, parabola, hyperbola, a point, a straight line and a pair of intersecting lines as a degenerated case of a conic section. Standard equations and simple properties of parabola, ellipse and hyperbola. Standard equation of a circle.

3. Introduction to Three-Dimensional Geometry

Coordinate axes and coordinate planes in three dimensions. Coordinates of a point. Distance between two points.

Unit-IV: Calculus

1. Limits and Derivatives

Derivative introduced as rate of change both as that of distance function and geometrically, intuitive idea of limit, limits of polynomials and rational functions trigonometric, exponential and logarithmic functions, definition of derivative relate it to the slope of the tangent of the curve, derivative of sum, difference, product and quotient of functions. Derivatives of polynomial and trigonometric functions.

Unit-V: Statistics and Probability

1. Statistics

Measures of Dispersion: Range, mean deviation, variance and standard deviation of ungrouped/grouped data.

2. Probability

Events; occurrence of events, ‘not’, ‘and’ and ‘or’ events, exhaustive events, mutually exclusive events, Axiomatic (set theoretic) probability, connections with other theories of earlier classes. Probability of an event, probability of ‘not’, ‘and’ and ‘or’ events.

Students can also get the syllabus of all the subjects by visiting CBSE Class 11 Syllabus page. Learn Maths & Science in an interactive & fun-loving way with Anand Classes App/Tablet.

Frequently Asked Questions on CBSE Class 11 Maths Syllabus 2025-26

Q1

What is the marks distribution for internals and theory exams according to the CBSE Maths Syllabus for Class 11?

The marks distribution for internals is 20 marks and the theory exam is 80 marks based on the CBSE Class 11 Maths Syllabus.

Q2

Which is the most important chapter in the CBSE Class 11 Maths Syllabus?

The important chapter in the CBSE Class 11 Maths Syllabus is Algebra which is for 25 marks in the overall weightage.

Q3

What are the chapters covered in Unit III of the CBSE Class 11 Maths Syllabus?

The chapters covered in Unit III of the CBSE Class 11 Maths Syllabus are straight lines, conic sections and an introduction to three-dimensional geometry.