Inverse Trigonometric Identities-Domain, Range, Formulas, Properties, Solved Examples, Class 12 Math Chapter 2 Notes Study Material Download free pdf

The representation of inverse trigonometric functions are:

If a = f(b), then the inverse function is

 b = f-1(a) 

Examples of inverse inverse trigonometric functions are sin-1x, cos-1x, tan-1x, etc.

What are Inverse Trigonometric Identities?

Inverse trigonometric identities are mathematical expressions involving inverse trigonometric functions such as sin⁡-1(x), cos-1(x), and tan⁡-1(x). These functions provide the angles (or arcs) corresponding to a given trigonometric ratio. The inverse trigonometric identities help in simplifying complex expressions and solving equations involving trigonometric functions.

Domain and Range of Inverse Trigonometric Identities

The following table shows some trigonometric functions with their domain and range.

FunctionDomainRange
y = sin-1 x[-1, 1][-π/2, π/2]
y = cos-1 x[-1, 1][0, π]
y = cosec-1 xR – (-1,1 )[-π/2, π/2] – {0}
y = sec-1 xR – (-1, 1)[0, π] – {π/2}
y = tan-1 xR(-π/2, π/2)
y = cot-1 xR(0, π)

Properties of Inverse Trigonometric Functions

The following are the properties of inverse trigonometric functions:

Property 1:

  1. sin-1 (1/x) = cosec-1 x, for x ≥ 1 or x ≤ -1
  2. cos-1 (1/x) = sec-1 x, for x ≥ 1 or x ≤ -1
  3. tan-1 (1/x) = cot-1 x, for x > 0

Property 2:

  1. sin-1 (-x) = -sin-1 x, for x ∈ [-1 , 1]
  2. tan-1 (-x) = -tan-1 x, for x ∈ R
  3. cosec-1 (-x) = -cosec-1 x, for |x| ≥ 1

Property 3

  1. cos-1 (-x) = π – cos-1 x, for x ∈ [-1 , 1]
  2. sec-1 (-x) = π – sec-1 x, for |x| ≥ 1
  3. cot-1 (-x) = π – cot-1 x, for x ∈ R

Property 4

  1. sin-1 x + cos-1 x = π/2, for x ∈ [-1,1]
  2. tan-1 x + cot-1 x = π/2, for x ∈ R
  3. cosec-1 x + sec-1 x = π/2 , for |x| ≥ 1

Property 5

  1. tan-1 x + tan-1 y = tan-1 ( x + y )/(1 – xy), for xy < 1
  2. tan-1 x – tan-1 y = tan-1 (x – y)/(1 + xy), for xy > -1
  3. tan-1 x + tan-1 y = π + tan-1 (x + y)/(1 – xy), for xy >1 ; x, y >0

Property 6

  1. 2tan-1 x = sin-1 (2x)/(1 + x2), for |x| ≤ 1
  2. 2tan-1 x = cos-1 (1 – x2)/(1 + x2), for x ≥ 0
  3. 2tan-1 x = tan-1 (2x)/(1 – x2), for -1 < x <1

Identities of Inverse Trigonometric Function

The following are the identities of inverse trigonometric functions:

  1. sin-1 (sin x) = x provided -π/2 ≤ x ≤ π/2
  2. cos-1 (cos x) = x provided 0 ≤ x ≤ π
  3. tan-1 (tan x) = x provided -π/2 < x < π/2
  4. sin(sin-1 x) = x provided -1 ≤ x ≤ 1
  5. cos(cos-1 x) = x provided -1 ≤ x ≤ 1
  6. tan(tan-1 x) = x provided x ∈ R
  7. cosec(cosec-1 x) = x provided -1 ≤ x ≤ ∞ or -∞ < x ≤ 1
  8. sec(sec-1 x) = x provided 1 ≤ x ≤ ∞ or -∞ < x ≤ 1
  9. cot(cot-1 x) = x provided -∞ < x < ∞
  10. sin−1(2×1+x2)=2tan−1xsin−1(1+x22x​)=2tan−1x
  11. cos−1(1–x21+x2)=2tan−1xcos−1(1+x21–x2​)=2tan−1x
  12. tan−1(2×1–x2)=2tan−1xtan−1(1–x22x​)=2tan−1x
  13. 2cos-1 x = cos-1 (2x2 – 1)
  14. 2sin-1x = sin-1 2x√(1 – x2)
  15. 3sin-1x = sin-1(3x – 4x3)
  16. 3cos-1 x = cos-1 (4x3 – 3x)
  17. 3tan-1x = tan-1((3x – x3/1 – 3x2))
  18. sin-1x + sin-1y = sin-1{ x√(1 – y2) + y√(1 – x2)}
  19. sin-1x – sin-1y = sin-1{ x√(1 – y2) – y√(1 – x2)}
  20. cos-1 x + cos-1 y = cos-1 [xy – √{(1 – x2)(1 – y2)}]
  21. cos-1 x – cos-1 y = cos-1 [xy + √{(1 – x2)(1 – y2)}
  22. tan-1 x + tan-1 y = tan-1(x + y/1 – xy)
  23. tan-1 x – tan-1 y = tan-1(x – y/1 + xy)
  24. tan-1 x + tan-1 y +tan-1 z = tan-1 (x + y + z – xyz)/(1 – xy – yz – zx)

Sample Problems on Inverse Trigonometric Identities

Question 1: Prove sin-1 x = sec-1 1/√(1-x2)

Solution: 

Let sin-1 x = y

⇒ sin y = x , (since sin y = perpendicular/hypotenuse ⇒ cos y = √(1- perpendicular2 )/hypotenuse )

⇒ cos y = √(1 – x2), here hypotenuse = 1

⇒ sec y = 1/cos y

⇒ sec y = 1/√(1 – x2)

⇒ y = sec-1 1/√(1 – x2)

⇒ sin-1 x = sec-1 1/√(1 – x2)

Hence, proved.

Question 2: Prove tan-1 x = cosec-1 √(1 + x2)/x

Solution:

Let tan-1 x = y

⇒ tan y = x , perpendicular = x and base = 1

⇒ sin y = x/√(x2 + 1) , (since hypotenuse = √(perpendicular2 + base2 ) )

⇒ cosec y = 1/sin y

⇒ cosec y = √(x2 + 1)/x

⇒ y = cosec-1 √(x2 + 1)/x

⇒ tan-1 x = cosec-1 √(x2 + 1)/x

Hence, proved.

Question 3: Evaluate tan(cos-1 x)

Solution: 

Let cos-1 x = y

⇒ cos y = x , base = x and hypotenuse = 1 therefore sin y = √(1 – x2)/1

⇒ tan y = sin y/ cos y

⇒ tan y = √(1 – x2)/x

⇒ y = tan-1 √(1 – x2)/x

⇒ cos-1 x = tan-1 √(1 – x2)/x

Therefore, tan(cos-1 x) = tan(tan-1 √(1 – x2)/x ) = √(1 – x2)/x.

Question 4: tan-1 √(sin x) + cot-1 √(sin x) = y. Find cos y.

Solution: 

We know that tan-1 x + cot-1 x = /2 therefore comparing this identity with the equation given in the question we get y = π/2

Thus, cos y = cos π/2 = 0.

Question 5: tan-1 (1 – x)/(1 + x) = (1/2)tan-1 x, x > 0. Solve for x.

Solution: 

tan-1 (1 – x)/(1 + x) = (1/2)tan-1 x

⇒ 2tan-1 (1 – x)/(1 + x) = tan-1 x     …(1)

We know that, 2tan-1 x = tan-1 2x/(1 – x2).

Therefore, LHS of equation (1) can be written as

tan-1 [ { 2(1 – x)/(1 + x)}/{ 1 – [(1 – x)(1 + x)]2}]

= tan-1 [ {2(1 – x)(1 + x)} / { (1 + x)2 – (1 – x)2 }]

= tan-1 [ 2(1 – x2)/(4x)]

= tan-1 (1 – x2)/(2x)

Since, LHS = RHS therefore

tan-1 (1 – x2)/(2x) = tan-1 x

⇒ (1 – x2)/2x = x

⇒ 1 – x2 = 2x2

⇒ 3x2 = 1

⇒ x = ± 1/√3

Since, x must be greater than 0 therefore x = 1/√3 is the acceptable answer.

Question 6: Prove tan-1 √x = (1/2)cos-1 (1 – x)/(1 + x)

Solution: 

Let tan-1 √x = y

⇒ tan y = √x

⇒ tan2 y = x

Therefore,

RHS = (1/2)cos-1 ( 1- tan2 y)/(1 + tan2 y)

= (1/2)cos-1 (cos2 y – sin2 y)/(cos2 y + sin2 y)

= (1/2)cos-1 (cos2 y – sin2 y)

= (1/2)cos-1 (cos 2y)

= (1/2)(2y)

= y

= tan-1 √x

= LHS

Hence, proved.

Question 7: tan-1 (2x)/(1 – x2) + cot-1 (1 – x2)/(2x) = π/2, -1 < x < 1. Solve for x.

Solutions: 

tan-1 (2x)/(1 – x2) + cot-1 (1 – x2)/(2x) = π/2

⇒ tan-1 (2x)/(1 – x2) + tan-1 (2x)/(1 – x2) = π/2

⇒ 2tan-1 (2x)/(1 – x2) = ∏/2

⇒ tan-1 (2x)/(1 – x2) = ∏/4

⇒ (2x)/(1 – x2) = tan ∏/4

⇒ (2x)/(1 – x2) = 1

⇒ 2x = 1 – x2

⇒ x2 + 2x -1 = 0

⇒ x = [-2 ± √(22 – 4(1)(-1))] / 2

⇒ x = [-2 ± √8] / 2

⇒ x = -1 ± √2

⇒ x = -1 + √2 or x = -1 – √2

But according to the question x ∈ (-1, 1) therefore for the given equation the solution set is x ∈ ∅.

Question 8: tan-1 1/(1 + 1.2) + tan-1 1/(1 + 2.3) + … + tan-1 1/(1 + n(n + 1)) = tan-1 x. Solve for x.

Solution:  

tan-1 1/(1 + 1.2) + tan-1 1/(1 + 2.3) + … + tan-1 1/(1 + n(n + 1)) = tan-1 x  

⇒ tan-1 (2 – 1)/(1 + 1.2) + tan-1 (3 – 2)/(1 + 2.3) + … + tan-1 (n + 1 – n)/(1 + n(n + 1)) = tan-1 x

⇒ (tan-1 2 – tan-1 1) + (tan-1 3 – tan-1 2) + … + (tan-1 (n + 1) – tan-1 n) = tan-1 x

⇒ tan-1 (n + 1) – tan-1 1 = tan-1 x

⇒ tan-1 n/(1 + (n + 1).1) = tan-1 x

⇒ tan-1 n/(n + 2) = tan-1 x

⇒ x = n/(n + 2)

Question 9: If 2tan-1 (sin x) = tan-1 (2sec x) then solve for x.

Solution: 

2tan-1 (sin x) = tan-1 (2sec x)

⇒ tan-1 (2sin x)/(1 – sin2 x) = tan-1 (2/cos x)

⇒ (2sin x)/(1 – sin2 x) = 2/cos x

⇒ sin x/cos2 x = 1/cos x

⇒ sin x cos x = cos2 x

⇒ sin x cos x – cos2 x = 0

⇒ cos x(sin x – cos x) = 0

⇒ cos x = 0 or sin x – cos x = 0

⇒ cos x = cos π/2 or tan x = tan π/4

⇒ x = π/2 or x = π/4

But at x = π/2 the given equation does not exist hence x = π/4 is the only solution.

Question 10: Prove that cot-1 [ {√(1 + sin x) + √(1 – sin x)}/{√(1 + sin x) – √(1 – sin x)}] = x/2, x ∈ (0, π/4)

Solution: 

Let x = 2y therefore

LHS = cot-1 [{√(1+sin 2y) + √(1-sin 2y)}/{√(1+sin 2y) – √(1-sin 2y)}]

= cot-1 [{√(cos2 y + sin2 y + 2sin y cos y) + √(cos2 y + sin2 y – 2sin y cos y)}/{√(cos2 y + sin2 y + 2sin y cos y) – √(cos2 y + sin2 y – 2sin y cos y)} ] 

= cot-1 [{√(cos y + sin y)2 + √(cos y – sin y)2} / {√(cos y + sin y)2 – √(cos y – sin y)2}] 

= cot-1 [( cos y + sin y + cos y – sin y )/(cos y + sin y – cos y + sin y)] 

= cot-1 (2cos y)/(2sin y)

= cot-1 (cot y)

= y

= x/2.

Practice Problems on Inverse Trigonometric Identities

Problem 1: Solve for x in the equation sin-1(x) + cos-1(x) = π/2

Problem 2: Prove that tan-1(1) + tan-1(2) + tan-1(3) = π

Problem 3: Evaluate cos⁡(sin-1(0.5))

Problem 4: If tan-1(x) + tan-1(2x) = π/4, then find x

Inverse Trigonometric Identities – FAQs

What are inverse trigonometric functions?

Inverse trigonometric functions are the inverse functions of the basic trigonometric functions (sine, cosine, tangent, cosecant, secant, and cotangent). They are used to find the angles corresponding to given trigonometric ratios.

Why are inverse trigonometric functions important?

Inverse trigonometric functions are essential in various fields like geometry, engineering, and physics because they help determine angles from trigonometric ratios, which is crucial for solving many practical problems.

What are the domains and ranges of inverse trigonometric functions?

Each inverse trigonometric function has specific domains and ranges:

sin-1(x) : Domain [-1, 1] and Range [- π/2, π/2]

cos-1(x) : Domain [-1, 1] and Range [ 0, π]

tan⁡-1(x) : Domain R and Range (- π/2, π/2)

Can inverse trigonometric functions be used in calculus?

Yes, inverse trigonometric functions are frequently used in calculus for integration and differentiation. They are particularly useful for integrating functions that involve trigonometric expressions.

Er. Neeraj K.Anand is a freelance mentor and writer who specializes in Engineering & Science subjects. Neeraj Anand received a B.Tech degree in Electronics and Communication Engineering from N.I.T Warangal & M.Tech Post Graduation from IETE, New Delhi. He has over 30 years of teaching experience and serves as the Head of Department of ANAND CLASSES. He concentrated all his energy and experiences in academics and subsequently grew up as one of the best mentors in the country for students aspiring for success in competitive examinations. In parallel, he started a Technical Publication "ANAND TECHNICAL PUBLISHERS" in 2002 and Educational Newspaper "NATIONAL EDUCATION NEWS" in 2014 at Jalandhar. Now he is a Director of leading publication "ANAND TECHNICAL PUBLISHERS", "ANAND CLASSES" and "NATIONAL EDUCATION NEWS". He has published more than hundred books in the field of Physics, Mathematics, Computers and Information Technology. Besides this he has written many books to help students prepare for IIT-JEE and AIPMT entrance exams. He is an executive member of the IEEE (Institute of Electrical & Electronics Engineers. USA) and honorary member of many Indian scientific societies such as Institution of Electronics & Telecommunication Engineers, Aeronautical Society of India, Bioinformatics Institute of India, Institution of Engineers. He has got award from American Biographical Institute Board of International Research in the year 2005.