Properties of Inverse Trigonometric Functions-Formulas, Solved Examples, Class 12 Math Chapter 2 Notes Study Material Download free pdf

⭐⭐⭐⭐ (4.1/5 from 431 reviews)

What are Inverse Trigonometric Functions?

Inverse trigonometric functions are the inverse functions of the basic trigonometric functions, which are sine, cosine, tangent, cotangent, secant, and cosecant.

These functions are used to find the angle of a triangle from any of the trigonometric ratios. They are also known as arcus functions, anti-trigonometric functions, or cyclometric functions

Restriction on Trigonometric Functions

A real function in the range  ƒ : R ⇒ [-1 , 1]  defined by ƒ(x) = sin(x) is not a bijection since different images have the same image such as ƒ(0) = 0, ƒ(2π) = 0,ƒ(π) = 0, so, ƒ is not one-one. Since ƒ is not a bijection (because it is not one-one) therefore inverse does not exist.

To make a function bijective we can restrict the domain of the function to [−π/2, π/2] or [−π/2, 3π/2] or [−3π/2, 5π/2] after restriction of domain ƒ(x) = sin(x) is a bijection, therefore ƒ is invertible. i.e. to make sin(x) we can restrict it to the domain [−π/2, π/2] or [−π/2, 3π/2] or [−3π/2, 5π/2] or…….  but  [−π/2, π/2] is the Principal solution of sin θ, hence to make sin θ invertible.

Naturally, the domain [−π/2, π/2] should be considered if no other domain is mentioned. 

  • ƒ: [−π/2, π/2]
    • ⇒ [-1, 1]  is defined as ƒ(x) = sin(x) and is a bijection, hence inverse exists.
    • The inverse of sin-1 is also called arcsine and inverse functions are also called arc functions.
  • ƒ:[−π/2 , π/2] ⇒ [−1 , 1] is defined as sinθ = x ⇔ sin-1(x) = θ , θ belongs to [−π/2 , π/2] and x belongs to [−1 , 1].

Similarly, we restrict the domains of cos, tan, cot, sec, cosec so that they are invertible.

Domain and Range of Inverse Trigonometric Functions

Below are some inverse trigonometric functions with their domain and range.

FunctionDomainRange
sin-1[-1 , 1 ][−π/2 , π/2]
cos-1[-1 , 1 ][0 , π]
tan-1R[−π/2 , π/2] 
cot-1R[0 , π]
sec-1(-∞ , -1] U [1, ∞)[0 , π] − {π/2}
cosec-1(-∞ , -1] U [1 , ∞)[−π/2 , π/2] – {0}

Properties of Inverse Trigonometric Functions

There are various properties of inverse trigonometric functions that are discussed as follows:

Set 1: Properties of sin

1) sin(θ) = x  ⇔  sin-1(x) = θ , θ ∈ [ -π/2 , π/2 ], x ∈ [ -1 , 1 ]  

2) sin-1(sin(θ)) = θ , θ ∈ [ -π/2 , π/2 ]

3) sin(sin-1(x)) = x , x ∈ [ -1 , 1 ]

Examples:

  • sin(π/6) = 1/2 ⇒ sin-1(1/2) = π/6 
  • sin-1(sin(π/6)) = π/6
  • sin(sin-1(1/2)) = 1/2

Set 2: Properties of cos

4) cos(θ) = x  ⇔  cos-1(x) = θ , θ ∈ [ 0 , π ] , x ∈ [ -1 , 1 ]  

5) cos-1(cos(θ)) = θ , θ ∈ [ 0 , π ]

6) cos(cos-1(x)) = x , x ∈ [ -1 , 1 ]

Examples:

  • cos(π/6) = √3/2 ⇒ cos-1(√3/2) = π/6 
  • cos-1(cos(π/6)) = π/6
  • cos(cos-1(1/2)) = 1/2

Set 3: Properties of tan

7) tan(θ) = x  ⇔  tan-1(x) = θ , θ ∈ [ -π/2 , π/2 ] ,  x ∈ R

8) tan-1(tan(θ)) = θ , θ ∈ [ -π/2 , π/2 ]

9) tan(tan-1(x)) = x , x ∈ R

Examples:

  • tan(π/4) = 1 ⇒ tan-1(1) = π/4
  • tan-1(tan(π/4)) = π/4
  • tan(tan-1(1)) = 1

Set 4: Properties of cot

10) cot(θ) = x  ⇔  cot-1(x) = θ , θ ∈ [ 0 , π ] , x ∈ R

11) cot-1(cot(θ)) = θ , θ ∈ [ 0 , π ]

12) cot(cot-1(x)) = x , x ∈ R

Examples:

  • cot(π/4) = 1 ⇒ cot-1(1) = π/4
  • cot(cot-1(π/4)) = π/4
  • cot(cot(1)) = 1

Set 5: Properties of sec

13) sec(θ) = x ⇔ sec-1(x) = θ , θ ∈ [ 0 , π] – { π/2 } , x ∈ (-∞,-1]  ∪ [1,∞)

14) sec-1(sec(θ)) = θ , θ ∈ [ 0 , π] – { π/2 }

15) sec(sec-1(x)) = x , x ∈ ( -∞ , -1 ]  ∪ [ 1 , ∞ )

Examples:

  • sec(π/3) = 1/2 ⇒ sec-1(1/2) = π/3 
  • sec-1(sec(π/3)) = π/3
  • sec(sec-1(1/2)) = 1/2

Set 6: Properties of cosec

16) cosec(θ) = x ⇔ cosec-1(x) = θ , θ ∈ [ -π/2 , π/2 ] – { 0 } , x ∈ ( -∞ , -1 ] ∪ [ 1,∞ )

17) cosec-1(cosec(θ)) = θ , θ ∈[ -π/2 , π ] – { 0 }

18) cosec(cosec-1(x)) = x , x ∈ ( -∞,-1 ] ∪ [ 1,∞ )

Examples:

  • cosec(π/6) = 2 ⇒ cosec-1(2) = π/6 
  • cosec-1(cosec(π/6)) = π/6
  • cosec(cosec-1(2)) = 2

Set 7: Other inverse trigonometric formulas

19) sin-1(-x) = -sin-1(x) ,  x ∈ [ -1 , 1 ]  

20) cos-1(-x) = π – cos-1(x) , x ∈ [ -1 , 1 ]

21) tan-1(-x) = -tan-1(x) , x ∈ R

22) cot-1(-x) = π – cot-1(x) , x ∈ R

23) sec-1(-x) = π – sec-1(x) , x ∈ ( -∞ , -1 ] ∪ [ 1 , ∞ )

24) cosec-1(-x) = -cosec-1(x) , x ∈ ( -∞ , -1 ] ∪ [ 1 , ∞ )

Examples:

  • sin-1(-1/2) = -sin-1(1/2)
  • cos-1(-1/2) = π -cos-1(1/2)
  • tan-1(-1) =  π -tan(1)
  • cot-1(-1) = -cot-1(1)
  • sec-1(-2) = -sec-1

Set 8: Sum of two trigonometric functions

25) sin-1(x) + cos-1(x) = π/2 , x ∈ [ -1 , 1 ]

26) tan-1(x) + cot-1(x) = π/2 , x ∈ R

27) sec-1(x) + cosec-1(x) = π/2 , x ∈ ( -∞ , -1 ] ∪ [ 1 , ∞ )

Proof:

sin-1(x) + cos-1(x) = π/2 , x ∈ [ -1 , 1 ]

let sin-1(x) = y 

now, 

x = sin y = cos((π/2) − y)

⇒ cos-1(x) = (π/2) – y = (π/2) −sin-1(x)

so, sin-1(x) + cos-1(x) = π/2                                        

tan-1(x) + cot-1(x) = π/2 , x ∈ R

Let tan-1(x) = y

now, cot(π/2 − y) = x 

⇒ cot-1(x) = (π/2 − y)

tan-1(x) + cot-1(x) = y + π/2 − y

so, tan-1(x) + cot-1(x) = π/2 

Similarly, we can prove the theorem of the sum of arcsec and arccosec as well.

Set 9: Conversion of trigonometric functions 

28) sin-1(1/x) = cosec-1(x) , x≥1 or x≤−1

29) cos-1(1/x) = sec-1(x) , x ≥ 1 or x ≤ −1

30) tan-1(1/x) = −π + cot-1(x)

Proof:

sin-1(1/x) = cosec-1(x) , x ≥ 1 or x ≤ −1

let, x = cosec(y)

1/x = sin(y)

⇒ sin-1(1/x) = y

⇒ sin-1(1/x) = cosec-1(x)

Similarly, we can prove the theorem of arccos and arctan as well

Example:

sin-1(1/2) = cosec-1(2)

Set 10: Periodic functions conversion

arcsin(x) = (-1)n arcsin(x) + πn

arccos(x) = ±arc cos x + 2πn

arctan(x) = arctan(x) + πn

arccot(x) = arccot(x) + πn

where n = 0, ±1, ±2, . . .

FAQs on Properties of Inverse Trigonometric Functions

What are inverse trigonometric functions?

Inverse trigonometric functions find angles when given trigonometric values, reversing sine, cosine, tangent, etc.

What are the domains and ranges of inverse trigonometric functions?

  • Arcsine (sin⁻¹x): Domain [−1,1], Range [−π/2, π/2]
  • Arccosine (cos⁻¹x): Domain [−1,1], Range [0,π]
  • Arctangent (tan⁻¹x): Domain (−∞,∞), Range (−π/2, π/2)

What are the principal values of inverse trigonometric functions?

Principal values are the main output values within specified ranges for arcsine, arccosine, and arctangent.

What are the properties of arcsine (sin-1 x)?

Some of the properties of inverse of sin function are:

  • Domain: [−1, 1]
  • Range: [−π/2, π/2]
  • Odd Function: sin-1 (-x) = −sin-1 x

What are the properties of arccosine (cos-1 x)?

Some of the properties of inverse of cos function are:

  • Domain: [−1, 1]
  • Range: [0, π]
  • Not Odd: cos-1 (-x) = π − cos-1 x

What are the properties of arccosine (tan-1 x)?

Some of the properties of inverse of tan function are:

  • Domain: (−∞,∞)
  • Range: [−π/2, π/2]
  • Odd Function: tan-1 (-x) = − tan-1 x
⬅️ Inverse Trigonometric Identities-Domain, Range, Formulas, Properties, Solved Examples, Class 12 Math Chapter 2 Notes Study Material Download free pdf Graphs of Inverse Trigonometric Functions-Formulas, Solved Examples, Class 12 Math Chapter 2 Notes Study Material Download free pdf ➡️

📚 Buy Study Material & Join Our Coaching

For premium study materials specially designed for JEE, NEET, NDA, CDS, AFCAT, SSC Exams, visit our official study material portal:
👉 https://publishers.anandclasses.co.in/

For JEE/NEET Notes : Visit https://anandclasses.in/

For NDA Notes : Visit https://nda.anandclasses.in/

For SSC Notes : Visit https://ssc.anandclasses.in/

For CDS, AFCAT Notes : Visit https://cds-afcat.anandclasses.in/

To enroll in our offline or online coaching programs, visit our coaching center website:
👉 https://anandclasses.co.in/

📞 Call us directly at: +91-94631-38669

💬 WhatsApp Us Instantly

Need quick assistance or want to inquire about classes and materials?

📲 Click below to chat instantly on WhatsApp:
👉 Chat on WhatsApp

🎥 Watch Video Lectures

Get access to high-quality video lessons, concept explainers, and revision tips by subscribing to our official YouTube channel:
👉 Neeraj Anand Classes – YouTube Channel

RELATED TOPICS