NCERT Solutions Complex Numbers & Quadratic Equations Ex-4.1 free pdf download

⭐⭐⭐⭐⭐ (5/5 from 26783 reviews)

NCERT Exercise 4.1 : Express each of the complex number given in the Questions 1 to 10 in the form a + ib.

Question.1 : $(5i)\left(\frac{-3i}{5}\right)$

Solution:

$5i \times \left(\frac{-3i}{5}\right) = -3 \times i^2$

Since, $i^2 = -1$. Therefore,

$-3 \times i^2 = -3 \times (-1) = 3$

Hence,
$$(5i)\left(\frac{-3i}{5}\right) = 3 + i0$$


Question 2: $i^9 + i^{19}$

Solution:

$i^9 + i^{19} = i(i^2)^4 + i(i^2)^9$

Since, $i^2 = -1$. Therefore,

$i(i^2)^4 + i(i^2)^9 = i(-1)^4 + i(-1)^9$

$= i – i = 0$

Hence,
$$i^9 + i^{19} = 0 + i0$$


Question 3: $i^{-39}$

Solution:

$i^{-39} = \frac{1}{i^{39}} = \frac{1}{i^3 \cdot (i^4)^9}$

Since, $i^3 = -i$ and $i^4 = 1$. Therefore,

$$\frac{1}{i^3 \cdot (i^4)^9} = \frac{1}{(-i)(1)} = \frac{1}{-i}$$

Multiply and divide by $i$:

$$\frac{1}{-i} \times \frac{i}{i} = \frac{i}{-i^2}$$

Since, $i^2 = -1$ and $-i^2 = 1$ Therefore,

$$\frac{i}{-i^2} = i$$

Hence,
$$i^{-39} = 0 + i1$$


Question 4: $3(7 + i7) + i(7 + i7)$

Solution:

$3(7 + i7) + i(7 + i7) = 21 + i21 + i7 + i^2 7$

Since, $i^2 = -1$. Therefore,

$$21 + i21 + i7 + i^2 7 = 21 + i28 + (-1)7 = 21 – 7 + i28$$

$$= 14 + i28$$

Hence,
$$3(7 + i7) + i(7 + i7) = 14 + i28$$


Question 5: $(1 – i) – (-1 + i6)$

Solution:

$(1 – i) – (-1 + i6) = 1 – i + 1 – i6 = 2 – i7$

$$(1 – i) – (-1 + i6)= 2 – i7$$


Question 6: $\left(\frac{1}{5} + i\frac{2}{5}\right) – (4 + i\frac{5}{2})$

Solution:

$\left(\frac{1}{5} + i\frac{2}{5}\right) – (4 + i\frac{5}{2}) = \frac{1}{5} + i\frac{2}{5} – 4 – i\frac{5}{2}$

$$= \frac{1}{5} – 4 + i\frac{2}{5} – i\frac{5}{2}$$

$$= -\frac{19}{5} – i\frac{21}{10}$$

Hence,
$$\left(\frac{1}{5} + i\frac{2}{5}\right) – (4 + i\frac{5}{2}) = -\frac{19}{5} – i\frac{21}{10}$$


Question 7: $$\left[\left(\frac{1}{3}+i\frac{7}{3}\right)+(4+i\frac{1}{3})\right]-\left(-\frac{4}{3}+i\right)$$

Solution:

$$\left[\frac{1}{3}+i\frac{7}{3}+4+i\frac{1}{3}\right]+ \frac{4}{3}-i$$

$$= \frac{13}{3} + i\frac{8}{3} + \frac{4}{3} – i$$

$$= \frac{17}{3} + i\frac{5}{3}$$

Hence,
$$\left[\left(\frac{1}{3}+i\frac{7}{3}\right)+(4+i\frac{1}{3})\right]-\left(-\frac{4}{3}+i\right)=\frac{17}{3}+i\frac{5}{3}$$


Question 8: $(1-i)^4$

Solution:

$$(1-i)^4=(1-i)^2(1-i)^2$$

$$(1-i)^2 = 1 + i^2 – 2i$$

Since $i^2=-1$,

$$(1-i)^2 = 1 -1 -2i = -2i$$

So

$$(1-i)^4 = (-2i)^2 = 4i^2 = 4(-1) = -4$$

Hence,
$$(1-i)^4 = -4 + i0$$


Question 9: $\left(\frac{1}{3}+3i\right)^3$

Solution:

Using expansion,

$$\left(\frac{1}{3}+3i\right)^3 = \left(\frac{1}{3}\right)^3 + (3i)^3 + 3\left(\frac{1}{3}\right)^2(3i) + 3(3i)^2\left(\frac{1}{3}\right)$$

$$= \frac{1}{27} + 27i^3 + 3\cdot\frac{1}{9}\cdot 3i + 3\cdot 9 i^2 \cdot \frac{1}{3}$$

$$= \frac{1}{27} + 27i^3 + i + 9i^2$$

Since $i^2=-1$ and $i^3=-i$,

$$= \frac{1}{27} -27i + 9(-1) + i$$

$$= \frac{1}{27} -9 -26i$$

$$= -\frac{242}{27} – 26i$$

Hence,
$$\left(\frac{1}{3}+3i\right)^3 = -\frac{242}{27} – i26$$


Question 10: $\left(-2 – i\frac{1}{3}\right)^3$

Solution:

Using expansion,

$$\left(-2 – i\frac{1}{3}\right)^3 = (-2)^3 + \left(-i\frac{1}{3}\right)^3 + 3(-2)\left(-i\frac{1}{3}\right)^2 + 3\left(-i\frac{1}{3}\right)(-2)^2$$

$$= -8 – i^3\frac{1}{27} – 6\left(\frac{i^2}{9}\right) – i\cdot 4$$

$$= -8 – i^3\frac{1}{27} – \frac{2 i^2}{3} – 4i$$

Since $i^2=-1$ and $i^3=-i$,

$$= -8 + i\frac{1}{27} + \frac{2}{3} – 4i$$

$$= -\frac{22}{3} + i\left(\frac{1}{27} – 4\right)$$

$$= -\frac{22}{3} – i\frac{107}{27}$$

Hence,
$$\left(-2 – i\frac{1}{3}\right)^3 = -\frac{22}{3} – i\frac{107}{27}$$


Find the multiplicative inverse of each of the complex numbers given in the Questions 11 to 13.


Question11 : $4 – 3i$

Solution

Let $4 – 3i = z$ (so $\overline{z} = 4 + 3i$).

$$
|z|^2 = 4^2 + (-3)^2 = 16 + 9 = 25
$$

Multiplicative inverse of $z$ is $z^{-1}$.

$$
z^{-1} = \frac{\overline{z}}{|z|^2} = \frac{4 + 3i}{25} = \frac{4}{25} + i\frac{3}{25}
$$


12. $\sqrt{5} + 3i$

Solution

Let $\sqrt{5} + 3i = z$ (so $\overline{z} = \sqrt{5} – 3i$).

$$
|z|^2 = (\sqrt{5})^2 + 3^2 = 5 + 9 = 14
$$

Multiplicative inverse of $z$ is $z^{-1}$.

$$
z^{-1} = \frac{\overline{z}}{|z|^2} = \frac{\sqrt{5} – 3i}{14} = \frac{\sqrt{5}}{14} – i\frac{3}{14}
$$


13. $-i$

Solution

Let $-i = z$ (so $\overline{z} = i$).

$$
|z|^2 = (-1)^2 = 1
$$

Multiplicative inverse of $z$ is $z^{-1}$.

$$
z^{-1} = \frac{\overline{z}}{|z|^2} = \frac{i}{1} = i
$$


14. Express the following expression in the form $a+ib$:
$$
\frac{(3 + i\sqrt{5})(3 – i\sqrt{5})}{(\sqrt{3} + \sqrt{2}\,i) – (\sqrt{3} – \sqrt{2}\,i)}
$$

Solution

$$
\frac{(3 + i\sqrt{5})(3 – i\sqrt{5})}{(\sqrt{3} + \sqrt{2}i) – (\sqrt{3} – \sqrt{2}i)}
= \frac{9 – (i\sqrt{5})^2}{\sqrt{3} + \sqrt{2}i – \sqrt{3} + \sqrt{2}i}
= \frac{9 – (i\sqrt{5})^2}{2\sqrt{2}\,i}
$$

Since $i^2 = -1$, we have $(i\sqrt{5})^2 = i^2\cdot 5 = -5$, so

$$
9 – (i\sqrt{5})^2 = 9 – (-5) = 14
$$

Thus

$$
\frac{9 – (i\sqrt{5})^2}{2\sqrt{2}\,i} = \frac{14}{2\sqrt{2}\,i} = \frac{7}{\sqrt{2}\,i}
$$

Multiply numerator and denominator by $\sqrt{2}\,i$:

$$
\frac{7}{\sqrt{2}\,i}\cdot\frac{\sqrt{2}\,i}{\sqrt{2}\,i}
= \frac{7\sqrt{2}\,i}{(\sqrt{2}\,i)^2}
= \frac{7\sqrt{2}\,i}{2i^2}
$$

Since $i^2 = -1$,

$$
\frac{7\sqrt{2}\,i}{2i^2} = \frac{7\sqrt{2}\,i}{2(-1)} = -\frac{7\sqrt{2}}{2}\,i
$$

So the expression in the form $a+ib$ is

$$
0 – i\frac{7\sqrt{2}}{2}\quad\text{or}\quad -\frac{7\sqrt{2}}{2}\,i.
$$

⬅️ NCERT Solutions Miscellaneous Exercise

📚 Buy Study Material & Join Our Coaching

For premium study materials specially designed for NDA Exam, visit our official study material portal:
👉 https://publishers.anandclasses.co.in/

For JEE/NEET Notes : Visit https://anandclasses.in/

To enroll in our offline or online coaching programs, visit our coaching center website:
👉 https://anandclasses.co.in/

📞 Call us directly at: +91-94631-38669

💬 WhatsApp Us Instantly

Need quick assistance or want to inquire about classes and materials?

📲 Click below to chat instantly on WhatsApp:
👉 Chat on WhatsApp

🎥 Watch Video Lectures

Get access to high-quality video lessons, concept explainers, and revision tips by subscribing to our official YouTube channel:
👉 Neeraj Anand Classes – YouTube Channel

RELATED TOPICS