Integral Calculus – Definition, Formulas, Methods, Applications, Examples, Class 12 Math Notes Study Material Download Free PDF

Integration Calculus

If we know the f’ of a function that is differentiable in its domain, we can then calculate f. In differential calculus, we used to call f’, the derivative of the function f. In integral calculus, we call f the anti-derivative or primitive of the function f’. And the process of finding the anti-derivatives is known as anti-differentiation or integration. As the name suggests, it is the inverse of finding differentiation. 

Types of Integrals

Integration can be classified into two different categories, namely,

  • Definite Integral
  • Indefinite Integral

Definite Integral

An integral that contains the upper and lower limits (i.e.) start and end value is known as a definite integral. The value of x is restricted to lie on a real line, and a definite Integral is also called a Riemann Integral when it is bound to lie on the real line.

A definite Integral is represented as:

\(\begin{array}{l}\int_{a}^{b}f(x)dx\end{array} \)

Learn more about definite integrals here.

Indefinite Integral

Indefinite integrals are not defined using the upper and lower limits. The indefinite integrals represent the family of the given function whose derivatives are f, and it returns a function of the independent variable.

The integration of a function f(x) is given by F(x) and it is represented by:

∫f(x) dx = F(x) + C 

Best JEE & NEET Physics, Chemistry, Biology, and Math Study Material – Anand Classes by Neeraj Anand (Published by Anand Technical Publishers)

If you are preparing for JEE Mains, JEE Advanced, or NEET, having the right study material can make all the difference. Anand Classes, authored by Neeraj Anand and published by Anand Technical Publishers, provides one of the most comprehensive, structured, and exam-oriented study materials for Physics, Chemistry, Biology, and Mathematics Subjects according to latest trends of JEE & NEET Entrance Exams.

Why Choose Anand Classes Study Material for JEE & NEET Preparation?

The study materials by Neeraj Anand are designed to simplify complex concepts, provide in-depth explanations, and offer ample practice questions to help students achieve top scores in competitive exams.

Comprehensive Coverage – Detailed explanations of Physics, Chemistry, Biology, and Mathematics concepts.
JEE & NEET Focused – Designed specifically for competitive exam success.
Solved Examples & Practice Questions – Strengthen your understanding with concept-based problems.
Short Tricks & Formulas – Easy-to-remember techniques for quick problem-solving.
Concept Clarity: Easy-to-understand theory with step-by-step explanations.
Topic-Wise Breakdown: Well-structured chapters following the latest syllabus of JEE Mains, JEE Advanced, and NEET.
Solved Examples & Practice Questions: Includes previous year questions (PYQs), important formulas, and shortcut techniques.
NCERT-Based & Advanced Level: Covers both board exam preparation and entrance exam syllabus for JEE & NEET aspirants.
Time-Saving Tricks: Quick formulas, memory techniques, and problem-solving strategies.

📚 Subjects Covered in Anand Classes Study Material

🔵 Physics (For JEE & NEET)

  • Kinematics & Laws of Motion
  • Work, Power & Energy
  • Gravitation & Fluid Mechanics
  • Thermodynamics & Heat Transfer
  • Electrostatics & Magnetism
  • Optics & Modern Physics
  • Semiconductor Electronics & Communication

🟠 Chemistry (For JEE & NEET)

Physical Chemistry

  • Mole Concept & Stoichiometry
  • Thermodynamics & Chemical Equilibrium
  • Electrochemistry & Chemical Kinetics

Inorganic Chemistry

  • Periodic Table & Chemical Bonding
  • Coordination Compounds & Metallurgy
  • P-Block, D-Block & F-Block Elements

Organic Chemistry

  • Hydrocarbons & Functional Groups
  • Reaction Mechanisms & Named Reactions
  • Biomolecules & Polymers

🟢 Biology (For NEET)

  • Diversity in the Living World
  • Cell Structure & Function
  • Genetics & Evolution
  • Human Physiology & Reproduction
  • Ecology & Environment

🔴 Mathematics (For JEE Mains & Advanced)

Permutation, Combination & Complex Numbers

Algebra & Probability

Trigonometry & Coordinate Geometry

Calculus (Differential & Integral)

Vectors & 3D Geometry

📥 Download PDF & Purchase the Study Material

The Anand Classes Study Material is available in PDF format and hardcopy. You can access high-quality notes, question banks, and practice tests to boost your JEE & NEET preparation.

🔹 Download Now: Get the latest edition PDF for easy access on mobile, tablet, or laptop.
🔹 Buy Hardcopy: Order the printed book for detailed study and offline preparation.

📌 Published by: Anand Technical Publishers
📌 Author: Neeraj Anand


where R.H.S. of the equation means integral off(x) with respect to x

F(x) is called anti-derivative or primitive.

f(x) is called the integrand.

dx is called the integrating agent.

C is called the constant of integration.

x is the variable of integration.

It may seem strange that there exist an infinite number of anti-derivatives for a function f. Taking an example will clarify it. Let us take f’ (x) = 3x2. By hit and trial, we can find out that its anti-derivative is F(x) = x3. This is because if you differentiate F with respect to x, you will get 3x2. There is only one function that we got as the anti-derivative of f. Let us now differentiate G(x)= x+ 9 with respect to x. Again we would get the same derivative, i.e. f. This gives us an important insight. Since the differentiation of all the constants is zero, we can write any constant with x3, and the derivative would still be equal to f. So, there are infinite constants that can be substituted for c in the equation F(x) = x+ C. Hence, there are infinite functions whose derivative is equal to f. And hence, there are infinite functions whose derivative is equal to 3x2. C is called an arbitrary constant. It is sometimes also referred to as the constant of integration.

Integral Calculus Formulas

Similar to differentiation formulas, we have integral formulas as well. Let us go ahead and look at some of the integral calculus formulas.

Integral Calculus Formulas

Methods of Finding Integrals of Functions

We have different methods to find the integral of a given function in integral calculus. The most commonly used methods of integration are:

  • Integration by Parts
  • Integration using Substitution

It is also possible to integrate the given function using the partial fractions technique.

Uses of Integral Calculus

Integral Calculus is mainly used for the following two purposes:

  1. To calculate f from f’. If a function f is differentiable in the interval of consideration, then f’ is defined. In differential calculus, we have already seen how to calculate derivatives of a function, and we can “undo” that with the help of integral calculus.
  2. To calculate the area under a curve.

Until now, we have learned that areas are always positive. But as a matter of fact, there is something called a signed area.

Application of Integral Calculus

The important applications of integral calculus are as follows. Integration is applied to find:

  • The area between two curves
  • Centre of mass
  • Kinetic energy
  • Surface area
  • Work
  • Distance, velocity and acceleration
  • The average value of a function
  • Volume

Integral Calculus Examples

Below are the Integral Calculus Problems and Solutions.

Example 1: Find the integral of the function f(x) = √x.

Solution:

Given,

f(x) = √x

∫f(x) dx = ∫√x dx

\(\begin{array}{l}\int \sqrt{x}\ dx = \int x^{\frac{1}{2}}\ dx\end{array} \)

We know that, 

\(\begin{array}{l}\int x^{n}\ dx = \frac{x^{n+1}}{n+1}+C\end{array} \)

Now,

\(\begin{array}{l}\int \sqrt{x}\ dx = \frac{x^{\frac{1}{2}+1}}{\frac{1}{2}+1}+C\\= \frac{x^{\frac{1+2}{2}}}{\frac{1+2}{2}}+C\\=\frac{2}{3}x^{\frac{3}{2}}+C\end{array} \)

Example 2: Find the integral of cos2n with respect to n.

Solution:

Let f(n) = cos2

we know that 2 cos2A = cos 2A + 1

So, f(n) = (1/2)(cos 2n + 1)

Let us find the integral of f(n).

∫f(n) dn = ∫(1/2)(cos 2n + 1) dn

= (1/2) ∫(cos 2n + 1) dn

= (1/2) ∫cos 2n dn + (1/2)∫1 dn

= (1/2) (sin 2n/2) + (1/2) n + C

= (sin 2n/4) + (n/4) + C

(1/4)[sin 2n + n] + C

Example 3: Evaluate:

\(\begin{array}{l}\int_{0}^{\pi}sin x\ dx\end{array} \)

Solution:

We know that,

∫sin x dx = cos x  + C

\(\begin{array}{l}\int_{0}^{\pi}sin x\ dx = [-cosx]_{0}^{\pi}\end{array} \)

= -cos π – (-cos 0)

= -(-1) + 1

= 1 + 1

= 2

Er. Neeraj K.Anand is a freelance mentor and writer who specializes in Engineering & Science subjects. Neeraj Anand received a B.Tech degree in Electronics and Communication Engineering from N.I.T Warangal & M.Tech Post Graduation from IETE, New Delhi. He has over 30 years of teaching experience and serves as the Head of Department of ANAND CLASSES. He concentrated all his energy and experiences in academics and subsequently grew up as one of the best mentors in the country for students aspiring for success in competitive examinations. In parallel, he started a Technical Publication "ANAND TECHNICAL PUBLISHERS" in 2002 and Educational Newspaper "NATIONAL EDUCATION NEWS" in 2014 at Jalandhar. Now he is a Director of leading publication "ANAND TECHNICAL PUBLISHERS", "ANAND CLASSES" and "NATIONAL EDUCATION NEWS". He has published more than hundred books in the field of Physics, Mathematics, Computers and Information Technology. Besides this he has written many books to help students prepare for IIT-JEE and AIPMT entrance exams. He is an executive member of the IEEE (Institute of Electrical & Electronics Engineers. USA) and honorary member of many Indian scientific societies such as Institution of Electronics & Telecommunication Engineers, Aeronautical Society of India, Bioinformatics Institute of India, Institution of Engineers. He has got award from American Biographical Institute Board of International Research in the year 2005.