Faraday's Laws of Electrolysis – First Law and Second law

What is an Electrode? 

An electrode can be defined as the point where current either enters or leaves the electrolyte or circuit. When the current leaves the electrode it is known as the cathode while when the current enters the electrode it is known as an anode. 

Electrodes are the main component of electrochemical cells. It is necessary that an electrode should be a good conductor of electricity. Although inert electrodes also exist which don’t take part in the reaction. The electrode can be of gold, platinum, carbon, graphite, metal etc. The electrode provides a surface for oxidation-reduction reactions in the cells. 

Electrodes are Mainly of two Types 

  1. Reactive electrodes are those electrodes that take part in the reaction taking place in the cell and can dissolve in the electrolyte. 

Examples of reactive electrodes – copper electrodes, silver electrodes, zinc electrodes, copper electrodes etc. These are mainly used in potentiometric work.  

  1. Inert electrodes are those electrodes that do not take part in the reaction. 

Examples of inert electrodes – Carbon electrodes, Platinum electrodes etc.

What is an Electrolytic Cell?

Electrolytic cells are those electrochemical cells that convert electrical energy into chemical potential energy. As we have discussed electrolysis above, you can relate that electrolytic cells work on the electrolysis process. Secondary cells or electrolytic cells are rechargeable; it means reversible chemical reactions occur in these cells. In these cells, the anode is always positive while the cathode is always negative. 

Faraday’s Laws of Electrolysis 

After having a clear understanding of electrolysis, electrodes, and electrolytic cells, now you are in the position to understand Faraday’s Laws of electrolysis. Faraday’s laws of electrolysis are based on the electrochemical research of Michael Faraday which he published in 1833. These show the quantitative relationship between the substance deposited at electrodes and the quantity of electric charge or electricity passed. 

Faraday’s First Law of Electrolysis 

Faraday’s First Law of Electrolysis states that “The mass of a substance deposited at any electrode is directly proportional to the amount of charge passed.” Mathematically it can be expressed as follows –

m ∝ Q ———-(1)

Where:

On removing the proportionality in equation (1) –

m=ZQ

Where Z is the proportionality constant. Its unit is grams per coulomb (g/C). It is also called the electrochemical equivalent. Z is the mass of a substance deposited at electrodes during electrolysis bypassing 1 coulomb of charge.  

Faraday’s Second Law of Electrolysis  

Faraday’s Second Law of Electrolysis states that “the mass of a substance deposited at any electrode on passing a certain amount of charge is directly proportional to its chemical equivalent weight.” Or “when the same quantity of electricity is passed through several electrolytes, the mass of the substances deposited are proportional to their respective chemical equivalent or equivalent weight”. Mathematically it can be represented as follows –

w ∝  E

Where w = mass of the substance 

E = equivalent weight of the substance

It can also be expressed as – w1/w2=E1/E2

The equivalent weight or chemical equivalent of a substance can be defined as the ratio of its atomic weight and valency. 

Equivalent weight=Atomic weight/Valency

Faraday’s Second Law of Electrolysis can be further explained by the following example –

Consider three different chemical reactions occurring in three separate electrolytic cells which are connected in series. Suppose in the 1st electrolytic cell sodium ion gains electrons and converts into sodium. 

Na+ + e → Na

In 2nd electrolytic cell following reaction occurs –

Cu+2 + 2e → Cu

In 3rd electrolytic cell following reaction occurs –

Al3++ 3e → Al

When supposing y moles of electrons are passed through three cells, the mass of sodium, aluminium and copper liberated are 23y grams, 9y grams, 31.75y grams respectively. 

One mole of electrons is required for the reduction of one mole of ions. As we know, the Charge on one electron is equal to

1.6021×10-19

C and one mole of electrons is equal to

6.023×1023

electrons. So, charge on one mole of electrons is equal to –

(6.023×1023)×(1.6021×10-19C)=96500 C

This charge (96500 C) is called 1 Faraday. 

If we pass 1 Faraday of charge in an electrolytic cell, then 1gm of the equivalent weight of the substance will get deposited. So, we can write –

w=(Q / 96500)×E

On combining the 1st and 2nd laws we get – 

Z= E / 96500

Er. Neeraj K.Anand is a freelance mentor and writer who specializes in Engineering & Science subjects. Neeraj Anand received a B.Tech degree in Electronics and Communication Engineering from N.I.T Warangal & M.Tech Post Graduation from IETE, New Delhi. He has over 30 years of teaching experience and serves as the Head of Department of ANAND CLASSES. He concentrated all his energy and experiences in academics and subsequently grew up as one of the best mentors in the country for students aspiring for success in competitive examinations. In parallel, he started a Technical Publication "ANAND TECHNICAL PUBLISHERS" in 2002 and Educational Newspaper "NATIONAL EDUCATION NEWS" in 2014 at Jalandhar. Now he is a Director of leading publication "ANAND TECHNICAL PUBLISHERS", "ANAND CLASSES" and "NATIONAL EDUCATION NEWS". He has published more than hundred books in the field of Physics, Mathematics, Computers and Information Technology. Besides this he has written many books to help students prepare for IIT-JEE and AIPMT entrance exams. He is an executive member of the IEEE (Institute of Electrical & Electronics Engineers. USA) and honorary member of many Indian scientific societies such as Institution of Electronics & Telecommunication Engineers, Aeronautical Society of India, Bioinformatics Institute of India, Institution of Engineers. He has got award from American Biographical Institute Board of International Research in the year 2005.

CBSE Class 12 Chemistry Syllabus Download PDF

Below is the CBSE Class 12 Syllabus along with the marking scheme and time duration of the Chemistry exam.

S.NoTitleNo. of PeriodsMarks
1Solutions107
2Electrochemistry129
3Chemical Kinetics107
4d -and f -Block Elements127
5Coordination Compounds127
6Haloalkanes and Haloarenes106
7Alcohols, Phenols and Ethers106
8Aldehydes, Ketones and Carboxylic Acids108
9Amines106
10Biomolecules127
Total70

CBSE Class 12 Chemistry Practical Syllabus along with Marking Scheme

The following is a breakdown of the marks for practical, project work, class records, and viva. The total number of marks for all parts is 15. The marks for both terms are provided in the table below.

Evaluation Scheme for ExaminationMarks
Volumetric Analysis08
Salt Analysis08
Content-Based Experiment06
Project Work and Viva04
Class record and Viva04
Total30

CBSE Class 12 Chemistry Syllabus (Chapter-wise)

Unit -1: Solutions

  • Raoult's law.
  • Colligative properties - relative lowering of vapour pressure, elevation of boiling point, depression of freezing point, osmotic pressure, determination of molecular masses using colligative properties, abnormal molecular mass.
  • Solutions, Types of solutions, expression of concentration of solutions of solids in liquids, solubility of gases in liquids, solid solutions.
  • Van't Hoff factor.

Unit -2: Electrochemistry

  • Redox reactions, EMF of a cell, standard electrode potential
  • Nernst equation and its application to chemical cells
  • Relation between Gibbs energy change and EMF of a cell
  • Kohlrausch's Law
  • Electrolysis and law of electrolysis (elementary idea)
  • Dry cell-electrolytic cells and Galvanic cells
  • Conductance in electrolytic solutions, specific and molar conductivity, variations of conductivity with concentration.
  • Lead accumulator
  • Fuel cells

Unit -3: Chemical Kinetics

  • Rate of a reaction (Average and instantaneous)
  • Rate law and specific rate constant
  • Integrated rate equations and half-life (only for zerfirst-order order reactions)
  • Concept of collision theory (elementary idea, no mathematical treatment)
  • Factors affecting rate of reaction: concentration, temperature, catalyst;
  • Order and molecularity of a reaction
  • Activation energy
  • Arrhenius equation

Unit -4: d and f Block Elements  

  • Lanthanoids- Electronic configuration, oxidation states, chemical reactivity and lanthanoid contraction and its consequences.
  • Actinoids- Electronic configuration, oxidation states and comparison with lanthanoids.
  • General introduction, electronic configuration, occurrence and characteristics of transition metals, general trends in properties of the first-row transition metals – metallic character, ionization enthalpy, oxidation states, ionic radii, color, catalytic property, magnetic properties, interstitial compounds, alloy formation, preparation and properties of K2Cr2O7 and KMnO4.

Unit -5: Coordination Compounds  

  • Coordination compounds - Introduction, ligands, coordination number, color, magnetic properties and shapes
  • The importance of coordination compounds (in qualitative analysis, extraction of metals and biological system).
  • IUPAC nomenclature of mononuclear coordination compounds.
  • Bonding
  • Werner's theory, VBT, and CFT; structure and stereoisomerism

Unit -6: Haloalkanes and Haloarenes  

  • Haloarenes: Nature of C–X bond, substitution reactions (Directive influence of halogen in monosubstituted compounds only). Uses and environmental effects of - dichloromethane, trichloro methane, tetrachloromethane, iodoform, freons, DDT.
  • Haloalkanes: Nomenclature, nature of C–X bond, physical and chemical properties, optical rotation mechanism of substitution reactions.

Unit -7: Alcohols, Phenols and Ethers   

  • Phenols: Nomenclature, methods of preparation, physical and chemical properties, acidic nature of phenol, electrophilic substitution reactions, uses of phenols.
  • Ethers: Nomenclature, methods of preparation, physical and chemical properties, uses.
  • Alcohols: Nomenclature, methods of preparation, physical and chemical properties (of primary alcohols only), identification of primary, secondary and tertiary alcohols, mechanism of dehydration, and uses with special reference to methanol and ethanol.

Unit -8: Aldehydes, Ketones and Carboxylic Acids   

  • Carboxylic Acids: Nomenclature, acidic nature, methods of preparation, physical and chemical properties; uses.
  • Aldehydes and Ketones: Nomenclature, nature of carbonyl group, methods of preparation, physical and chemical properties, mechanism of nucleophilic addition, the reactivity of alpha hydrogen in aldehydes, uses.

Unit -9: Amines    

  • Diazonium salts: Preparation, chemical reactions and importance in synthetic organic chemistry.
  • Amines: Nomenclature, classification, structure, methods of preparation, physical and chemical properties, uses, and identification of primary, secondary and tertiary amines.

Unit -10: Biomolecules     

  • Proteins -Elementary idea of - amino acids, peptide bond, polypeptides, proteins, structure of proteins - primary, secondary, tertiary structure and quaternary structures (qualitative idea only), denaturation of proteins; enzymes. Hormones - Elementary idea excluding structure.
  • Vitamins - Classification and functions.
  • Carbohydrates - Classification (aldoses and ketoses), monosaccharides (glucose and fructose), D-L configuration oligosaccharides (sucrose, lactose, maltose), polysaccharides (starch, cellulose, glycogen); Importance of carbohydrates.
  • Nucleic Acids: DNA and RNA.

The syllabus is divided into three parts: Part A, Part B, and Part C. Part A consist of Basic Concepts of Chemistry, which covers topics such as atomic structure, chemical bonding, states of matter, and thermochemistry. Part B consists of Topics in Physical Chemistry, which includes topics such as chemical kinetics, equilibrium, and electrochemistry. Part C consists of Topics in Organic Chemistry, which covers topics such as alkanes, alkenes, alkynes, and aromatic compounds.

Basic Concepts of Chemistry:

  • Atomic structure: This section covers the fundamental concepts of atomic structure, including the electronic configuration of atoms, the Bohr model of the atom, and the wave nature of matter.
  • Chemical bonding: This section covers the different types of chemical bonds, including ionic, covalent, and metallic bonds, as well as the concept of hybridization.
  • States of the matter: This section covers the three states of matter - solid, liquid, and gas - and the factors that influence their properties.
  • Thermochemistry: This section covers the principles of thermochemistry, including the laws of thermodynamics and the concept of enthalpy.

Chapters in Physical Chemistry:

  • Chemical kinetics: This section covers the study of the rate of chemical reactions and the factors that influence it, including the concentration of reactants, temperature, and the presence of catalysts.
  • Equilibrium: This section covers the principles of chemical equilibrium, including the concept of Le Chatelier's principle and the equilibrium constant.
  • Electrochemistry: This section covers the principles of electrochemistry, including the concept of half-cell reactions, galvanic cells, and electrolysis.

Chapters in Organic Chemistry:

  • Alkanes: This section covers the properties and reactions of alkanes, including their structure, isomerism, and combustion.
  • Alkenes: This section covers the properties and reactions of alkenes, including their structure, isomerism, and addition reactions.
  • Alkynes: This section covers the properties and reactions of alkynes, including their structure, isomerism, and addition reactions.
  • Aromatic compounds: This section covers the properties and reactions of aromatic compounds, including their structure, isomerism, and electrophilic substitution reactions.

In addition to the topics covered in the syllabus, the CBSE Class 12 Chemistry exam also tests students on their analytical and problem-solving skills, as well as their ability to apply the concepts learned in the classroom to real-world situations.

Students can also check out the Tips for the Class 12 Chemistry Exam. They can easily access the Class 12 study material in one place by visiting the CBSE Class 12 page at ANAND CLASSES (A School Of Competitions). Moreover, to get interactive lessons and study videos, download the ANAND CLASSES (A School Of Competitions) App.

Frequently Asked Questions on CBSE Class 12 Chemistry Syllabus

Q1

How many chapters are there in the CBSE Class 12 Chemistry as per the syllabus?

There are 10 chapters in the CBSE Class 12 Chemistry as per Syllabus. Students can learn all these chapters efficiently using the study materials provided at ANAND CLASSES (A School Of Competitions).

Q2

What is the marking scheme for CBSE Class 12 Chemistry practical exam according to the syllabus?

The marking scheme for CBSE Class 12 Chemistry practical exam, according to the syllabus, is 8 marks for volumetric analysis, 8 marks for salt analysis, 6 marks for the content-based experiment, 4 marks for the project and viva and 4 marks for class record and viva.

Q3

Which is the scoring chapter in Chemistry as per CBSE Class 12 syllabus?

The chapter Electrochemistry in Chemistry is the scoring chapter as per CBSE Class 12 syllabus.