A buffer solution is a water solvent-based solution which consists of a mixture containing a weak acid and the conjugate base of the weak acid or a weak base and the conjugate acid of the weak base. They resist a change in pH upon dilution or upon the addition of small amounts of acid/alkali to them.
The pH of buffer solutions shows minimal change upon the addition of a very small quantity of strong acid or strong base. They are therefore used to keep the pH at a constant value.
Table of Contents
What Is a Buffer Solution?
The buffer solution is a solution able to maintain its hydrogen ion concentration (pH) with only minor changes in the dilution or addition of a small amount of either acid or base. Buffer solutions are used in fermentation, food preservatives, drug delivery, electroplating, printing and the activity of enzymes, and the blood oxygen-carrying capacity needs specific hydrogen ion concentration (pH).
Solutions of a weak acid and its conjugate base or weak base and its conjugate acid are able to maintain pH and are buffer solutions.
Types of Buffer Solutions
The two primary types into which buffer solutions are broadly classified are acidic and alkaline buffers.
Acidic Buffers
As the name suggests, these solutions are used to maintain acidic environments. Acid buffer has acidic pH and is prepared by mixing a weak acid and its salt with a strong base. An aqueous solution of an equal concentration of acetic acid and sodium acetate has a pH of 4.74.
The pH of these solutions is below seven.
These solutions consist of a weak acid and a salt of a weak acid.
An example of an acidic buffer solution is a mixture of sodium acetate and acetic acid (pH = 4.75).
Alkaline Buffers
These buffer solutions are used to maintain basic conditions. A basic buffer has a basic pH and is prepared by mixing a weak base and its salt with strong acid. The aqueous solution of an equal concentration of ammonium hydroxide and ammonium chloride has a pH of 9.25.
The pH of these solutions is above seven.
They contain a weak base and a salt of the weak base.
An example of an alkaline buffer solution is a mixture of ammonium hydroxide and ammonium chloride (pH = 9.25).
Mechanism of a Buffering Action
In solution, the salt is completely ionised, and the weak acid is partly ionised.
CH3COONa ⇌ Na+ + CH3COO–
CH3COOH ⇌ H+ + CH3COO–
On Addition of Acid and Base
1. On addition of acid, the released protons of acid will be removed by the acetate ions to form an acetic acid molecule.
If the dissociation constant of the acid (pKa) and of the base (pKb) is known, a buffer solution can be prepared by controlling the salt-acid or the salt-base ratio.
As discussed earlier, these solutions are prepared by mixing the weak bases with their corresponding conjugate acids or by mixing weak acids with their corresponding conjugate bases.
An example of this method of preparing buffer solutions can be given by the preparation of a phosphate buffer by mixing HPO42- and H2PO4-. The pH maintained by this solution is 7.4.
Handerson-Hasselbalch Equation
Preparation of Acid Buffer
Consider an acid buffer solution containing a weak acid (HA) and its salt (KA) with a strong base (KOH). Weak acid HA ionises, and the equilibrium can be written as
HA + H2O ⇋ H+ + A−
Acid dissociation constant = Ka = [H+] [A–]/HA
Taking the negative log of RHS and LHS,
pH of acid buffer = pKa + ([salt]/[acid])
The equation is the Henderson-Hasselbalch equation, popularly known as the Henderson equation.
Preparation of a Base Buffer
Consider a base buffer solution containing a weak base (B) and its salt (BA) with strong acid.
pOH, can be derived as above.
pOH of a basic buffer = pKb + log ([salt]/[acid])
pH of a basic buffer = pKa – log ([salt]/[acid])
Significance of the Handerson Equation
Handerson equation can be used to
Calculate the pH of the buffer prepared from a mixture of salt and weak acid/base.
Calculate the pKa value.
Prepare buffer solution of needed pH.
Limitations of Henderson-Hasselbalch Equation
The Henderson-Hasselbalch equation cannot be used for strong acids and strong bases.
Buffering Capacity
The number of millimoles of acid or base to be added to a litre of buffer solution to change the pH by one unit is the buffer capacity of the buffer.
Β = millimoles /(ΔpH)
Problems on Buffer Solution
Problem 1: What is the ratio of base to acid when pH = pKa in buffer solution? How about when pH = PKa + 1?
Sol:
pH = pKa when the ratio of base to acid is 1 because log 1 = 0
When log (base/acid) = 1, then the ratio of base to acid is 10:1
Problem 2: What is the pH of a buffered solution of 0.5 M ammonia and 0.5 M ammonium chloride when enough hydrochloric acid corresponds to make 0.15 M HCl?
Sol:
The pKb of ammonia is 4.75.
pKa = 14 – pKb. = 9.25
0.15 M H+ reacts with 0.15 M ammonia to form 0.15 M more ammonium.
So, the ammonium ion is 0.65 M and 0.35 M remaining ammonia (base).
0.0355 mol of acetic acid and 0.0645 mol of sodium acetate is required to prepare 1 L of the buffer solution.
pH Maintenance
In order to understand how buffer solutions maintain a constant pH, let us consider the example of a buffer solution containing sodium acetate and acetic acid.
In this example, it can be noted that the sodium acetate almost completely undergoes ionisation, whereas the acetic acid is only weakly ionised. These equilibrium reactions can be written as
CH3COOH ⇌ H+ + CH3COO–
CH3COONa ⇌ Na+ + CH3COO–
When strong acids are added, the H+ ions combine with the CH3COO– ions to give a weakly ionised acetic acid, resulting in a negligible change in the pH of the environment.
When strongly alkaline substances are introduced to this buffer solution, the hydroxide ions react with the acids which are free in the solution to yield water molecules, as shown in the reaction given below.
CH3COOH + OH– ⇌ CH3COO– + H2O
Therefore, the hydroxide ions react with the acid to form water, and the pH remains the same.
Uses of Buffer Solutions
There exist a few alternate names that are used to refer to buffer solutions, such as pH buffers or hydrogen ion buffers.
An example of the use of buffers in pH regulation is the use of bicarbonate and carbonic acid buffer system in order to regulate the pH of animal blood.
Buffer solutions are also used to maintain an optimum pH for enzyme activity in many organisms.
The absence of these buffers may lead to the slowing of the enzyme action, loss in enzyme properties, or even denaturing of the enzymes. This denaturation process can even permanently deactivate the catalytic action of the enzymes.
Frequently Asked Questions – FAQs
Q1
What is a buffer solution?
A buffer solution contains a weak acid and the conjugate base of a weak acid, used to prevent the change in pH of a solution.
Q2
What is the pH range of an acidic solution?
The pH range of an acidic solution is 0-6.
Q3
What is the pH range of a basic solution?
The pH range of a basic solution is 8-14.
Q4
What pH value is considered neutral?
A pH value of 7 is considered neutral.
Q5
What is the drawback of the Henderson-Hasselbach equation?
The Henderson-Hasselbach equation is not applicable to strong acids and bases.
Neeraj Anand, Param Anand
Er. Neeraj K.Anand is a freelance mentor and writer who specializes in Engineering & Science subjects. Neeraj Anand received a B.Tech degree in Electronics and Communication Engineering from N.I.T Warangal & M.Tech Post Graduation from IETE, New Delhi. He has over 30 years of teaching experience and serves as the Head of Department of ANAND CLASSES. He concentrated all his energy and experiences in academics and subsequently grew up as one of the best mentors in the country for students aspiring for success in competitive examinations.
In parallel, he started a Technical Publication "ANAND TECHNICAL PUBLISHERS" in 2002 and Educational Newspaper "NATIONAL EDUCATION NEWS" in 2014 at Jalandhar. Now he is a Director of leading publication "ANAND TECHNICAL PUBLISHERS", "ANAND CLASSES" and "NATIONAL EDUCATION NEWS".
He has published more than hundred books in the field of Physics, Mathematics, Computers and Information Technology. Besides this he has written many books to help students prepare for IIT-JEE and AIPMT entrance exams. He is an executive member of the IEEE (Institute of Electrical & Electronics Engineers. USA) and honorary member of many Indian scientific societies such as Institution of Electronics & Telecommunication Engineers, Aeronautical Society of India, Bioinformatics Institute of India, Institution of Engineers. He has got award from American Biographical Institute Board of International Research in the year 2005.
CBSE Class 11 Chemistry Syllabus is a vast which needs a clear understanding of the concepts and topics. Knowing CBSE Class 11 Chemistry syllabus helps students to understand the course structure of Chemistry.
Unit-wise CBSE Class 11 Syllabus for Chemistry
Below is a list of detailed information on each unit for Class 11 Students.
UNIT I – Some Basic Concepts of Chemistry
General Introduction: Importance and scope of Chemistry.
Nature of matter, laws of chemical combination, Dalton’s atomic theory: concept of elements, atoms and molecules.
Atomic and molecular masses, mole concept and molar mass, percentage composition, empirical and molecular formula, chemical reactions, stoichiometry and calculations based on stoichiometry.
UNIT II – Structure of Atom
Discovery of Electron, Proton and Neutron, atomic number, isotopes and isobars. Thomson’s model and its limitations. Rutherford’s model and its limitations, Bohr’s model and its limitations, concept of shells and subshells, dual nature of matter and light, de Broglie’s relationship, Heisenberg uncertainty principle, concept of orbitals, quantum numbers, shapes of s, p and d orbitals, rules for filling electrons in orbitals – Aufbau principle, Pauli’s exclusion principle and Hund’s rule, electronic configuration of atoms, stability of half-filled and completely filled orbitals.
UNIT III – Classification of Elements and Periodicity in Properties
Significance of classification, brief history of the development of periodic table, modern periodic law and the present form of periodic table, periodic trends in properties of elements -atomic radii, ionic radii, inert gas radii, Ionization enthalpy, electron gain enthalpy, electronegativity, valency. Nomenclature of elements with atomic number greater than 100.
UNIT IV – Chemical Bonding and Molecular Structure
Valence electrons, ionic bond, covalent bond, bond parameters, Lewis structure, polar character of covalent bond, covalent character of ionic bond, valence bond theory, resonance, geometry of covalent molecules, VSEPR theory, concept of hybridization, involving s, p and d orbitals and shapes of some simple molecules, molecular orbital theory of homonuclear diatomic molecules(qualitative idea only), Hydrogen bond.
UNIT V – Chemical Thermodynamics
Concepts of System and types of systems, surroundings, work, heat, energy, extensive and intensive properties, state functions. First law of thermodynamics – internal energy and enthalpy, measurement of U and H, Hess’s law of constant heat summation, enthalpy of bond dissociation, combustion, formation, atomization, sublimation, phase transition, ionization, solution and dilution. Second law of Thermodynamics (brief introduction) Introduction of entropy as a state function, Gibb’s energy change for spontaneous and nonspontaneous processes. Third law of thermodynamics (brief introduction).
UNIT VI – Equilibrium
Equilibrium in physical and chemical processes, dynamic nature of equilibrium, law of mass action, equilibrium constant, factors affecting equilibrium – Le Chatelier’s principle, ionic equilibrium- ionization of acids and bases, strong and weak electrolytes, degree of ionization, ionization of poly basic acids, acid strength, concept of pH, hydrolysis of salts (elementary idea), buffer solution, Henderson Equation, solubility product, common ion effect (with illustrative examples).
UNIT VII – Redox Reactions
Concept of oxidation and reduction, redox reactions, oxidation number, balancing redox reactions, in terms of loss and gain of electrons and change in oxidation number, applications of redox reactions.
UNIT VIII – Organic Chemistry: Some basic Principles and Techniques
General introduction, classification and IUPAC nomenclature of organic compounds. Electronic displacements in a covalent bond: inductive effect, electromeric effect, resonance and hyper conjugation. Homolytic and heterolytic fission of a covalent bond: free radicals, carbocations, carbanions, electrophiles and nucleophiles, types of organic reactions.
UNIT IX – Hydrocarbons
Classification of Hydrocarbons Aliphatic Hydrocarbons: Alkanes – Nomenclature, isomerism, conformation (ethane only), physical properties, chemical reactions. Alkenes – Nomenclature, structure of double bond (ethene), geometrical isomerism, physical properties, methods of preparation, chemical reactions: addition of hydrogen, halogen, water, hydrogen halides (Markovnikov’s addition and peroxide effect), ozonolysis, oxidation, mechanism of electrophilic addition. Alkynes – Nomenclature, structure of triple bond (ethyne), physical properties, methods of preparation, chemical reactions: acidic character of alkynes, addition reaction of – hydrogen, halogens, hydrogen halides and water.
Aromatic Hydrocarbons:
Introduction, IUPAC nomenclature, benzene: resonance, aromaticity, chemical properties: mechanism of electrophilic substitution. Nitration, sulphonation, halogenation, Friedel Craft’s alkylation and acylation, directive influence of functional group in monosubstituted benzene. Carcinogenicity and toxicity.
To know the CBSE Syllabus for all the classes from 1 to 12, visit the Syllabus page of CBSE. Meanwhile, to get the Practical Syllabus of Class 11 Chemistry, read on to find out more about the syllabus and related information in this page.
CBSE Class 11 Chemistry Practical Syllabus with Marking Scheme
In Chemistry subject, practical also plays a vital role in improving their academic scores in the subject. The overall weightage of Chemistry practical mentioned in the CBSE Class 11 Chemistry syllabus is 30 marks. So, students must try their best to score well in practicals along with theory. It will help in increasing their overall academic score.
CBSE Class 11 Chemistry Practical Syllabus
The experiments will be conducted under the supervision of subject teacher. CBSE Chemistry Practicals is for 30 marks. This contribute to the overall practical marks for the subject.
The table below consists of evaluation scheme of practical exams.
Evaluation Scheme
Marks
Volumetric Analysis
08
Salt Analysis
08
Content Based Experiment
06
Project Work
04
Class record and viva
04
Total
30
CBSE Syllabus for Class 11 Chemistry Practical
Micro-chemical methods are available for several of the practical experiments. Wherever possible such techniques should be used.
A. Basic Laboratory Techniques 1. Cutting glass tube and glass rod 2. Bending a glass tube 3. Drawing out a glass jet 4. Boring a cork
B. Characterization and Purification of Chemical Substances 1. Determination of melting point of an organic compound. 2. Determination of boiling point of an organic compound. 3. Crystallization of impure sample of any one of the following: Alum, Copper Sulphate, Benzoic Acid.
C. Experiments based on pH
1. Any one of the following experiments:
Determination of pH of some solutions obtained from fruit juices, solution of known and varied concentrations of acids, bases and salts using pH paper or universal indicator.
Comparing the pH of solutions of strong and weak acids of same concentration.
Study the pH change in the titration of a strong base using universal indicator.
2. Study the pH change by common-ion in case of weak acids and weak bases.
D. Chemical Equilibrium One of the following experiments:
1. Study the shift in equilibrium between ferric ions and thiocyanate ions by increasing/decreasing the concentration of either of the ions. 2. Study the shift in equilibrium between [Co(H2O)6] 2+ and chloride ions by changing the concentration of either of the ions.
E. Quantitative Estimation i. Using a mechanical balance/electronic balance. ii. Preparation of standard solution of Oxalic acid. iii. Determination of strength of a given solution of Sodium hydroxide by titrating it against standard solution of Oxalic acid. iv. Preparation of standard solution of Sodium carbonate. v. Determination of strength of a given solution of hydrochloric acid by titrating it against standard Sodium Carbonatesolution.
F. Qualitative Analysis 1) Determination of one anion and one cation in a given salt Cations‐ Pb2+, Cu2+, As3+, Al3+, Fe3+, Mn2+, Ni2+, Zn2+, Co2+, Ca2+, Sr2+, Ba2+, Mg2+, NH4+ Anions – (CO3)2‐ , S2‐, NO2‐ , SO32‐, SO2‐ , NO ‐ , Cl‐ , Br‐, I‐, PO43‐ , C2O2‐ ,CH3COO‐ (Note: Insoluble salts excluded)
2) Detection of ‐ Nitrogen, Sulphur, Chlorine in organic compounds.
G) PROJECTS Scientific investigations involving laboratory testing and collecting information from other sources.
A few suggested projects are as follows:
Checking the bacterial contamination in drinking water by testing sulphide ion
Study of the methods of purification of water.
Testing the hardness, presence of Iron, Fluoride, Chloride, etc., depending upon the regional variation in drinking water and study of causes of presence of these ions above permissible limit (if any).
Investigation of the foaming capacity of different washing soaps and the effect of addition of Sodium carbonate on it.
Study the acidity of different samples of tea leaves.
Determination of the rate of evaporation of different liquids Study the effect of acids and bases on the tensile strength of fibres.
Study of acidity of fruit and vegetable juices.
Note: Any other investigatory project, which involves about 10 periods of work, can be chosen with theapproval of the teacher.
Practical Examination for Visually Impaired Students of Class 11
Below is a list of practicals for the visually impaired students.
A. List of apparatus for identification for assessment in practicals (All experiments) Beaker, tripod stand, wire gauze, glass rod, funnel, filter paper, Bunsen burner, test tube, test tube stand, dropper, test tube holder, ignition tube, china dish, tongs, standard flask, pipette, burette, conical flask, clamp stand, dropper, wash bottle • Odour detection in qualitative analysis • Procedure/Setup of the apparatus
B. List of Experiments A. Characterization and Purification of Chemical Substances 1. Crystallization of an impure sample of any one of the following: copper sulphate, benzoic acid B. Experiments based on pH 1. Determination of pH of some solutions obtained from fruit juices, solutions of known and varied concentrations of acids, bases and salts using pH paper 2. Comparing the pH of solutions of strong and weak acids of same concentration.
C. Chemical Equilibrium 1. Study the shift in equilibrium between ferric ions and thiocyanate ions by increasing/decreasing the concentration of eitherions. 2. Study the shift in equilibrium between [Co(H2O)6]2+ and chloride ions by changing the concentration of either of the ions.
D. Quantitative estimation 1. Preparation of standard solution of oxalic acid. 2. Determination of molarity of a given solution of sodium hydroxide by titrating it against standard solution of oxalic acid.
E. Qualitative Analysis 1. Determination of one anion and one cation in a given salt 2. Cations – NH+4 Anions – (CO3)2-, S2-, (SO3)2-, Cl-, CH3COO- (Note: insoluble salts excluded) 3. Detection of Nitrogen in the given organic compound. 4. Detection of Halogen in the given organic compound.
Note: The above practicals may be carried out in an experiential manner rather than recording observations.
We hope students must have found this information on CBSE Syllabus useful for their studying Chemistry. Learn Maths & Science in interactive and fun loving ways with ANAND CLASSES (A School Of Competitions) App/Tablet.
Frequently Asked Questions on CBSE Class 11 Chemistry Syllabus
Q1
How many units are in the CBSE Class 11 Chemistry Syllabus?
There are 9 units in the CBSE Class 11 Chemistry Syllabus. Students can access various study materials for the chapters mentioned in this article for free at ANAND CLASSES (A School Of Competitions).
Q2
What is the total marks for practicals examination as per the CBSE Class 11 Chemistry Syllabus?
The total marks for the practicals as per the CBSE Class 11 Chemistry Syllabus is 30. It includes volumetric analysis, content-based experiment, salt analysis, class record, project work and viva.
Q3
Which chapter carries more weightage as per the CBSE Syllabus for Class 11 Chemistry?
The organic chemistry chapter carries more weightage as per the CBSE Syllabus for Class 11 Chemistry.
Anand Technical Publishers
Buy Products (Printed Books & eBooks) of Anand Classes published by Anand Technical Publishers, Visit at following link :