Bond Parameters-Bond Order, Bond Angle, Bond Length, and Bond Dissociation Energy

What are Bond Parameters?

Covalent bonds can be characterized on the basis of several bond parameters such as bond length, bond angle, bond order, and bond energy (also known as bond enthalpy).

These bond parameters offer insight into the stability of a chemical compound and the strength of the chemical bonds holding its atoms together.

Covalent bonds can be characterized on the basis of several bond parameters such as bond length, bond angle, bond order, and bond energy (also known as bond enthalpy).

Bond Order

The bond order of a covalent bond is the total number of covalently bonded electron pairs between two atoms in a molecule. It can be found by drawing the Lewis structure of the molecule and counting the total number of electron pairs between the atoms in question.

  • Single bonds have a bond order of 1.
  • Double bonds have a bond order of 2.
  • Triple bonds have a bond order of 3.

Note: If the bond order of a covalent bond is 0, the two atoms in question are not covalently bonded (no bond exists).

Examples

  • The bond order of the carbon-hydrogen bond in C2H2 (ethyne/acetylene) is 1 and that of the carbon-carbon bond is 3.
  • The bond order of the oxygen-oxygen bond in an O2 molecule is 2.
  • In a carbon monoxide molecule, the carbon-oxygen bond has a bond order of 3, as illustrated in the Lewis structure provided below.
Covalent bonds can be characterized on the basis of several bond parameters such as bond length, bond angle, bond order, and bond energy (also known as bond enthalpy).
  • Since the nitrate ion is stabilized by resonance, the bond order of the nitrogen-oxygen bond is 4/3 or 1.33. It is calculated by dividing the total number of nitrogen-oxygen bonds (4) by the total number of covalently bonded nitrogen-oxygen groups (3).

Bond Order as per the Molecular Orbital Theory

As per the molecular orbital theory, the bond order of a covalent bond is equal to half of the difference between the number of bonding and anti bonding electrons, as represented by the following formula:

Bond Order = (½)*(total no. of bonding electrons – total no. of anti bonding electrons)

Bond Angle

Bond angle can be defined as the angle formed between two covalent bonds that originate from the same atom. An illustration detailing the bond angle in a water molecule (104.5oC) is provided below.

Covalent bonds can be characterized on the basis of several bond parameters such as bond length, bond angle, bond order, and bond energy (also known as bond enthalpy).

The geometric angle between any two adjacent covalent bonds is called a bond angle. This bond parameter provides insight into the molecular geometry of a compound.

Bond Length

Bond length is a measure of the distance between the nuclei of two chemically bonded atoms in a molecule. It is approximately equal to the sum of the covalent radii of the two bonded atoms. For covalent bonds, the bond length is inversely proportional to the bond order – higher bond orders result in stronger bonds, which are accompanied by stronger forces of attraction holding the atoms together. Short bonds are a consequence of these strong forces of attraction.

Covalent bonds can be characterized on the basis of several bond parameters such as bond length, bond angle, bond order, and bond energy (also known as bond enthalpy).

An illustration describing the bond length of a covalent bond in terms of the sum of the individual covalent radii of the participating atoms is provided above. This bond parameter can be experimentally determined via the following techniques:

  • Rotational spectroscopy.
  • X-ray diffraction.
  • Neutron diffraction.

Bonded atoms tend to absorb thermal energy from their surroundings and constantly vibrate. This vibration causes the bond length to vary. Therefore, it is important to note that the bond length of a covalent bond represents the average distance between the nuclei of the participating atoms.

Bond lengths are directly proportional to the atomic radii of the participating atoms. The periodic trends that can be observed in the bond lengths of elements are similar to the periodic trends in the atomic radii of the elements (decreases across the period, increases down the group).

Covalent bonds can be characterized on the basis of several bond parameters such as bond length, bond angle, bond order, and bond energy (also known as bond enthalpy).

An illustration detailing the periodic trends in bond length is provided above. It can be noted that the H-H bond is the bond with the shortest bond length (74 picometers).

Bond Energy or Bond Enthalpy

Bond energy is a measure of the strength of a chemical bond. It can be defined as the energy required to break all covalent bonds of a specific type in one mole of a chemical compound (which is in its gaseous state).

Covalent bonds can be characterized on the basis of several bond parameters such as bond length, bond angle, bond order, and bond energy (also known as bond enthalpy).

It is important to note that bond energy is not the same as bond dissociation energy. The latter is the change in enthalpy associated with the homolytic cleavage of a bond whereas the former is the average of the bond dissociation enthalpies of all bonds (of a specific type) in a molecule.

Factors Affecting Bond Energy

The strength of a chemical bond is directly proportional to the amount of energy required to break it. Therefore, bond energy is:

  • Inversely proportional to the bond length, i.e. longer bonds have lower bond energies.
  • Directly proportional to the bond order, i.e. multiple bonds have high bond energies.
  • Inversely proportional to the atomic radii of the atoms participating in the bond (since the atomic radius is directly proportional to bond length).

Note: the difference in the electronegativities of the atoms participating in the chemical bond also contributes to the bond energy.

Frequently Asked Questions – FAQs

Q1

What is mean by bond angle?

The angle formed between three atoms over at least two bonds is a bond angle. The angle of torsion for the four atoms bonded together in a chain is the angle between the plane created by the first three atoms and the plane created by the last three atoms.

Q2

Which bond is the strongest bond?

Thus, we find that triple bonds between the same two atoms are stronger and shorter than double bonds; similarly, double bonds between the same two atoms are stronger and shorter than single bonds.

Q3

Is a double bond or triple bond stronger?

Owing to the presence of two pi bonds, rather than one, triple bonds are stronger than double bonds. Each carbon has two hybrid sp-orbitals and one of them overlaps to form a sp-sp sigma bond with the matching one from the other carbon atom.

Q4

Are polar or nonpolar bonds stronger?

One may assume that due to the coulomb forces involved, polar bonds are stronger, but they are soluble in water, etc., so that the bond can be quickly dissolved, whereas nonpolar bonds can not be dissolved so quickly even if the forces in play are much weaker.

Q5

What is enthalpy of bond dissociation?

The amount of energy contained in a bond between atoms in a molecule is defined by bond enthalpy, which is also known as bond-dissociation enthalpy, average bond energy, or bond strength. In fact, in the gas phase, it is the energy that needs to be applied to the homolytic or symmetrical cleavage of a bond.

Er. Neeraj K.Anand is a freelance mentor and writer who specializes in Engineering & Science subjects. Neeraj Anand received a B.Tech degree in Electronics and Communication Engineering from N.I.T Warangal & M.Tech Post Graduation from IETE, New Delhi. He has over 30 years of teaching experience and serves as the Head of Department of ANAND CLASSES. He concentrated all his energy and experiences in academics and subsequently grew up as one of the best mentors in the country for students aspiring for success in competitive examinations. In parallel, he started a Technical Publication "ANAND TECHNICAL PUBLISHERS" in 2002 and Educational Newspaper "NATIONAL EDUCATION NEWS" in 2014 at Jalandhar. Now he is a Director of leading publication "ANAND TECHNICAL PUBLISHERS", "ANAND CLASSES" and "NATIONAL EDUCATION NEWS". He has published more than hundred books in the field of Physics, Mathematics, Computers and Information Technology. Besides this he has written many books to help students prepare for IIT-JEE and AIPMT entrance exams. He is an executive member of the IEEE (Institute of Electrical & Electronics Engineers. USA) and honorary member of many Indian scientific societies such as Institution of Electronics & Telecommunication Engineers, Aeronautical Society of India, Bioinformatics Institute of India, Institution of Engineers. He has got award from American Biographical Institute Board of International Research in the year 2005.

CBSE Class 11 Chemistry Syllabus

CBSE Class 11 Chemistry Syllabus is a vast which needs a clear understanding of the concepts and topics. Knowing CBSE Class 11 Chemistry syllabus helps students to understand the course structure of Chemistry.

Unit-wise CBSE Class 11 Syllabus for Chemistry

Below is a list of detailed information on each unit for Class 11 Students.

UNIT I – Some Basic Concepts of Chemistry

General Introduction: Importance and scope of Chemistry.

Nature of matter, laws of chemical combination, Dalton’s atomic theory: concept of elements,
atoms and molecules.

Atomic and molecular masses, mole concept and molar mass, percentage composition, empirical and molecular formula, chemical reactions, stoichiometry and calculations based on stoichiometry.

UNIT II – Structure of Atom

Discovery of Electron, Proton and Neutron, atomic number, isotopes and isobars. Thomson’s model and its limitations. Rutherford’s model and its limitations, Bohr’s model and its limitations, concept of shells and subshells, dual nature of matter and light, de Broglie’s relationship, Heisenberg uncertainty principle, concept of orbitals, quantum numbers, shapes of s, p and d orbitals, rules for filling electrons in orbitals – Aufbau principle, Pauli’s exclusion principle and Hund’s rule, electronic configuration of atoms, stability of half-filled and completely filled orbitals.

UNIT III – Classification of Elements and Periodicity in Properties

Significance of classification, brief history of the development of periodic table, modern periodic law and the present form of periodic table, periodic trends in properties of elements -atomic radii, ionic radii, inert gas radii, Ionization enthalpy, electron gain enthalpy, electronegativity, valency. Nomenclature of elements with atomic number greater than 100.

UNIT IV – Chemical Bonding and Molecular Structure

Valence electrons, ionic bond, covalent bond, bond parameters, Lewis structure, polar character of covalent bond, covalent character of ionic bond, valence bond theory, resonance, geometry of covalent molecules, VSEPR theory, concept of hybridization, involving s, p and d orbitals and shapes of some simple molecules, molecular orbital theory of homonuclear diatomic molecules(qualitative idea only), Hydrogen bond.

UNIT V – Chemical Thermodynamics

Concepts of System and types of systems, surroundings, work, heat, energy, extensive and intensive properties, state functions. First law of thermodynamics – internal energy and enthalpy, measurement of U and H, Hess’s law of constant heat summation, enthalpy of bond dissociation, combustion, formation, atomization, sublimation, phase transition, ionization, solution and dilution. Second law of Thermodynamics (brief introduction)
Introduction of entropy as a state function, Gibb’s energy change for spontaneous and nonspontaneous processes.
Third law of thermodynamics (brief introduction).

UNIT VI – Equilibrium

Equilibrium in physical and chemical processes, dynamic nature of equilibrium, law of mass action, equilibrium constant, factors affecting equilibrium – Le Chatelier’s principle, ionic equilibrium- ionization of acids and bases, strong and weak electrolytes, degree of ionization,
ionization of poly basic acids, acid strength, concept of pH, hydrolysis of salts (elementary idea), buffer solution, Henderson Equation, solubility product, common ion effect (with illustrative examples).

UNIT VII – Redox Reactions

Concept of oxidation and reduction, redox reactions, oxidation number, balancing redox reactions, in terms of loss and gain of electrons and change in oxidation number, applications of redox reactions.

UNIT VIII – Organic Chemistry: Some basic Principles and Techniques

General introduction, classification and IUPAC nomenclature of organic compounds. Electronic displacements in a covalent bond: inductive effect, electromeric effect, resonance and hyper conjugation. Homolytic and heterolytic fission of a covalent bond: free radicals, carbocations, carbanions, electrophiles and nucleophiles, types of organic reactions.

UNIT IX – Hydrocarbons

Classification of Hydrocarbons
Aliphatic Hydrocarbons:
Alkanes – Nomenclature, isomerism, conformation (ethane only), physical properties, chemical reactions.
Alkenes – Nomenclature, structure of double bond (ethene), geometrical isomerism, physical properties, methods of preparation, chemical reactions: addition of hydrogen, halogen, water, hydrogen halides (Markovnikov’s addition and peroxide effect), ozonolysis, oxidation, mechanism of electrophilic addition.
Alkynes – Nomenclature, structure of triple bond (ethyne), physical properties, methods of preparation, chemical reactions: acidic character of alkynes, addition reaction of – hydrogen, halogens, hydrogen halides and water.

Aromatic Hydrocarbons:

Introduction, IUPAC nomenclature, benzene: resonance, aromaticity, chemical properties: mechanism of electrophilic substitution. Nitration, sulphonation, halogenation, Friedel Craft’s alkylation and acylation, directive influence of functional group in monosubstituted benzene. Carcinogenicity and toxicity.

To know the CBSE Syllabus for all the classes from 1 to 12, visit the Syllabus page of CBSE. Meanwhile, to get the Practical Syllabus of Class 11 Chemistry, read on to find out more about the syllabus and related information in this page.

CBSE Class 11 Chemistry Practical Syllabus with Marking Scheme

In Chemistry subject, practical also plays a vital role in improving their academic scores in the subject. The overall weightage of Chemistry practical mentioned in the CBSE Class 11 Chemistry syllabus is 30 marks. So, students must try their best to score well in practicals along with theory. It will help in increasing their overall academic score.

CBSE Class 11 Chemistry Practical Syllabus

The experiments will be conducted under the supervision of subject teacher. CBSE Chemistry Practicals is for 30 marks. This contribute to the overall practical marks for the subject.

The table below consists of evaluation scheme of practical exams.

Evaluation SchemeMarks
Volumetric Analysis08
Salt Analysis08
Content Based Experiment06
Project Work04
Class record and viva04
Total30

CBSE Syllabus for Class 11 Chemistry Practical

Micro-chemical methods are available for several of the practical experiments. Wherever possible such techniques should be used.

A. Basic Laboratory Techniques
1. Cutting glass tube and glass rod
2. Bending a glass tube
3. Drawing out a glass jet
4. Boring a cork

B. Characterization and Purification of Chemical Substances
1. Determination of melting point of an organic compound.
2. Determination of boiling point of an organic compound.
3. Crystallization of impure sample of any one of the following: Alum, Copper Sulphate, Benzoic Acid.

C. Experiments based on pH

1. Any one of the following experiments:

  • Determination of pH of some solutions obtained from fruit juices, solution of known and varied concentrations of acids, bases and salts using pH paper or universal indicator.
  • Comparing the pH of solutions of strong and weak acids of same concentration.
  • Study the pH change in the titration of a strong base using universal indicator.

2. Study the pH change by common-ion in case of weak acids and weak bases.

D. Chemical Equilibrium
One of the following experiments:

1. Study the shift in equilibrium between ferric ions and thiocyanate ions by increasing/decreasing the concentration of either of the ions.
2. Study the shift in equilibrium between [Co(H2O)6] 2+ and chloride ions by changing the concentration of either of the ions.

E. Quantitative Estimation
i. Using a mechanical balance/electronic balance.
ii. Preparation of standard solution of Oxalic acid.
iii. Determination of strength of a given solution of Sodium hydroxide by titrating it against standard solution of Oxalic acid.
iv. Preparation of standard solution of Sodium carbonate.
v. Determination of strength of a given solution of hydrochloric acid by titrating it against standard Sodium Carbonatesolution.

F. Qualitative Analysis
1) Determination of one anion and one cation in a given salt
Cations‐ Pb2+, Cu2+, As3+, Al3+, Fe3+, Mn2+, Ni2+, Zn2+, Co2+, Ca2+, Sr2+, Ba2+, Mg2+, NH4 +
Anions – (CO3)2‐ , S2‐, NO2 , SO32‐, SO2‐ , NO , Cl , Br, I‐, PO43‐ , C2O2‐ ,CH3COO
(Note: Insoluble salts excluded)

2) Detection of ‐ Nitrogen, Sulphur, Chlorine in organic compounds.

G) PROJECTS
Scientific investigations involving laboratory testing and collecting information from other sources.

A few suggested projects are as follows:

  • Checking the bacterial contamination in drinking water by testing sulphide ion
  • Study of the methods of purification of water.
  • Testing the hardness, presence of Iron, Fluoride, Chloride, etc., depending upon the regional
    variation in drinking water and study of causes of presence of these ions above permissible
    limit (if any).
  • Investigation of the foaming capacity of different washing soaps and the effect of addition of
    Sodium carbonate on it.
  • Study the acidity of different samples of tea leaves.
  • Determination of the rate of evaporation of different liquids Study the effect of acids and
    bases on the tensile strength of fibres.
  • Study of acidity of fruit and vegetable juices.

Note: Any other investigatory project, which involves about 10 periods of work, can be chosen with the approval of the teacher.

Practical Examination for Visually Impaired Students of Class 11

Below is a list of practicals for the visually impaired students.

A. List of apparatus for identification for assessment in practicals (All experiments)
Beaker, tripod stand, wire gauze, glass rod, funnel, filter paper, Bunsen burner, test tube, test tube stand,
dropper, test tube holder, ignition tube, china dish, tongs, standard flask, pipette, burette, conical flask, clamp
stand, dropper, wash bottle
• Odour detection in qualitative analysis
• Procedure/Setup of the apparatus

B. List of Experiments A. Characterization and Purification of Chemical Substances
1. Crystallization of an impure sample of any one of the following: copper sulphate, benzoic acid
B. Experiments based on pH
1. Determination of pH of some solutions obtained from fruit juices, solutions of known and varied
concentrations of acids, bases and salts using pH paper
2. Comparing the pH of solutions of strong and weak acids of same concentration.

C. Chemical Equilibrium
1. Study the shift in equilibrium between ferric ions and thiocyanate ions by increasing/decreasing
the concentration of eitherions.
2. Study the shift in equilibrium between [Co(H2O)6]2+ and chloride ions by changing the
concentration of either of the ions.

D. Quantitative estimation
1. Preparation of standard solution of oxalic acid.
2. Determination of molarity of a given solution of sodium hydroxide by titrating it against standard
solution of oxalic acid.

E. Qualitative Analysis
1. Determination of one anion and one cation in a given salt
2. Cations – NH+4
Anions – (CO3)2-, S2-, (SO3)2-, Cl-, CH3COO-
(Note: insoluble salts excluded)
3. Detection of Nitrogen in the given organic compound.
4. Detection of Halogen in the given organic compound.

Note: The above practicals may be carried out in an experiential manner rather than recording observations.

We hope students must have found this information on CBSE Syllabus useful for their studying Chemistry. Learn Maths & Science in interactive and fun loving ways with ANAND CLASSES (A School Of Competitions) App/Tablet.

Frequently Asked Questions on CBSE Class 11 Chemistry Syllabus

Q1

How many units are in the CBSE Class 11 Chemistry Syllabus?

There are 9 units in the CBSE Class 11 Chemistry Syllabus. Students can access various study materials for the chapters mentioned in this article for free at ANAND CLASSES (A School Of Competitions).

Q2

What is the total marks for practicals examination as per the CBSE Class 11 Chemistry Syllabus?

The total marks for the practicals as per the CBSE Class 11 Chemistry Syllabus is 30. It includes volumetric analysis, content-based experiment, salt analysis, class record, project work and viva.

Q3

Which chapter carries more weightage as per the CBSE Syllabus for Class 11 Chemistry?

The organic chemistry chapter carries more weightage as per the CBSE Syllabus for Class 11 Chemistry.