Differential Equations Exercise 9.4 NCERT Solutions Class 12 Math Chapter-9 PDF Free Download (Set-2)

โญโญโญโญโญ (5/5 from 52678 reviews)

NCERT Question 7 : Show that the given differential equation is homogeneous and solve it.
$$\left[x\cos\left(\frac{y}{x}\right) + y\sin\left(\frac{y}{x}\right)\right]ydx = \left[y\sin\left(\frac{y}{x}\right) – x\cos\left(\frac{y}{x}\right)\right]xdy$$

Solution :
Given differential equation

$$\left[x\cos\left(\frac{y}{x}\right) + y\sin\left(\frac{y}{x}\right)\right]ydx = \left[y\sin\left(\frac{y}{x}\right) – x\cos\left(\frac{y}{x}\right)\right]xdy$$

Rearranging,

$$\dfrac{dy}{dx} = \dfrac{\left[x\cos\left(\dfrac{y}{x}\right) + y\sin\left(\dfrac{y}{x}\right)\right]y}{\left[y\sin\left(\dfrac{y}{x}\right) – x\cos\left(\dfrac{y}{x}\right)\right]x}.$$

Since replacing $(x, y)$ with $(\lambda x, \lambda y)$ leaves the expression unchanged, the equation is homogeneous.

Let $y = vx$ so that $v = \dfrac{y}{x}$ and

$$\frac{dy}{dx} = v + x\frac{dv}{dx}.$$

Substitute $y = vx$ into the right-hand side:

$$
\frac{dy}{dx} = \frac{[x\cos v + vx\sin v]vx}{[vx\sin v – x\cos v]x}
= \frac{v(\cos v + v\sin v)}{v\sin v – \cos v}.
$$

Equating both sides,

$$
v + x\frac{dv}{dx} = \frac{v(\cos v + v\sin v)}{v\sin v – \cos v}.
$$

Simplify:

$$
x\frac{dv}{dx} = \frac{v(\cos v + v\sin v)}{v\sin v – \cos v} – v.
$$

Taking the LCM,

$$
x\frac{dv}{dx} = \frac{2v\cos v}{v\sin v – \cos v}.
$$

Separate the variables:

$$
\frac{v\sin v – \cos v}{2v\cos v}dv = \frac{dx}{x}.
$$

Simplify the integrand:

$$
\frac{v\sin v – \cos v}{2v\cos v} = \frac{1}{2}\left(\tan v – \frac{1}{v}\right).
$$

Integrating both sides,

$$
\int \frac{1}{2}\left(\tan v – \frac{1}{v}\right)dv = \int \frac{dx}{x}.
$$

Compute the integrals:

$$
\frac{1}{2}(-\ln|\cos v| – \ln|v|) = \ln|x| + C.
$$

Simplify:

$$
-\frac{1}{2}\ln(v\cos v) = \ln x + C.
$$

Rearranging,

$$
\ln(v\cos v) = -2\ln x + C’.
$$

Exponentiating both sides:

$$
v\cos v = \frac{K}{x^2},
$$

where $K = e^{C’}$.

Substitute back $v = \dfrac{y}{x}$:

$$
\frac{y}{x}\cos\left(\frac{y}{x}\right) = \frac{K}{x^2}.
$$

Multiply both sides by $x^2$:

$$
xy\cos\left(\frac{y}{x}\right) = K.
$$

Final Answer

$$\boxed{xy\cos\left(\frac{y}{x}\right) = C}$$

Download solved differential equations notes by Anand Classes โ€” ideal for JEE, CBSE, and advanced calculus preparation.


NCERT Question 8 : Show that the given differential equation is homogeneous and solve it.
$$x\frac{dy}{dx} – y + x\sin\left(\frac{y}{x}\right) = 0.$$

Solution :
Given differential equation
$$x\frac{dy}{dx} – y + x\sin\left(\frac{y}{x}\right) = 0.$$

Rearranging, we get

$$x\frac{dy}{dx} = y – x\sin\left(\frac{y}{x}\right)$$

which gives

$$\frac{dy}{dx} = \frac{y – x\sin\left(\dfrac{y}{x}\right)}{x}.$$

Since the right-hand side is a function of $\dfrac{y}{x}$ only, the given equation is homogeneous.

Let $y = vx$, so that $v = \frac{y}{x}$ and

$$\frac{dy}{dx} = v + x\frac{dv}{dx}.$$

Substitute $y = vx$ into the equation:

$$
v + x\frac{dv}{dx} = \frac{vx – x\sin v}{x} = v – \sin v.
$$

Simplify:

$$
x\frac{dv}{dx} = -\sin v.
$$

Separate the variables:

$$
\frac{dv}{\sin v} = -\frac{dx}{x}.
$$

Integrate both sides:

$$
\int \csc vdv = -\int \frac{dx}{x}.
$$

Using $\displaystyle \int \csc vdv = \ln|\csc v – \cot v| + C$, we get

$$
\ln|\csc v – \cot v| = -\ln|x| + C.
$$

Simplify:

$$
\ln|\csc v – \cot v| = \ln\left(\frac{C}{x}\right).
$$

Exponentiating both sides:

$$
\csc v – \cot v = \frac{C}{x}.
$$

Substitute back $v = \dfrac{y}{x}$:

$$
\csc\left(\frac{y}{x}\right) – \cot\left(\frac{y}{x}\right) = \frac{C}{x}.
$$

We can also write it as:

$$
\frac{1 – \cos\left(\dfrac{y}{x}\right)}{\sin\left(\dfrac{y}{x}\right)} = \frac{C}{x}
$$

which gives

$$
x\left[1 – \cos\left(\frac{y}{x}\right)\right] = C\sin\left(\frac{y}{x}\right).
$$

Final Answer

$$\boxed{\csc\left(\frac{y}{x}\right) – \cot\left(\frac{y}{x}\right) = \frac{C}{x}}$$

or equivalently

$$\boxed{x\left[1 – \cos\left(\frac{y}{x}\right)\right] = C\sin\left(\frac{y}{x}\right)}.$$

Download Anand Classes differential equation notes โ€” perfect for JEE, CBSE, and competitive exam preparation.


NCERT Question 9 : Show that the given differential equation is homogeneous and solve it.
$$ydx + x\log\left(\frac{y}{x}\right)dy – 2xdy = 0$$

Solution :
Given differential equation

$$ydx + x\log\left(\frac{y}{x}\right)dy – 2xdy = 0$$

Rewriting,

$$ydx + x\left[\log\left(\dfrac{y}{x}\right) – 2\right]dy = 0.$$

Hence,

$$\frac{dy}{dx} = \frac{y}{x\left(2 – \log\left(\dfrac{y}{x}\right)\right)}.$$

The right-hand side is a function of $\dfrac{y}{x}$ only, so the equation is homogeneous.

Let $y = vx$, so that $v = \frac{y}{x}$ and

$$\frac{dy}{dx} = v + x\frac{dv}{dx}.$$

Substitute $y = vx$ into the differential equation:

$$
v + x\frac{dv}{dx} = \frac{v}{2 – \log v}.
$$

Simplify:

$$
x\frac{dv}{dx} = \frac{v}{2 – \log v} – v = \frac{v(\log v – 1)}{2 – \log v}.
$$

Separate the variables:

$$
\frac{2 – \log v}{v(\log v – 1)}dv = \frac{dx}{x}.
$$

Let $\log v = t$ so that $dt = \dfrac{dv}{v}$. Then,

$$
\frac{2 – t}{t – 1}dt = \frac{dx}{x}.
$$

Simplify the left-hand side:

$$
\frac{2 – t}{t – 1} = -1 + \frac{1}{t – 1}.
$$

Integrate both sides:

$$
\int \left(-1 + \frac{1}{t – 1}\right)dt = \int \frac{dx}{x}.
$$

On integration,

$$
-t + \log|t – 1| = \log|x| + C.
$$

Substitute back $t = \log v$:

$$
-\log v + \log|\log v – 1| = \log|x| + C.
$$

Combine the logarithms:

$$
\log\left(\frac{\log v – 1}{v}\right) = \log|x| + C.
$$

Simplify:

$$
\frac{\log v – 1}{v} = C_1 x
$$

where $C_1 = e^{C}$.

Substitute back $v = \dfrac{y}{x}$:

$$
\frac{\log\left(\dfrac{y}{x}\right) – 1}{\dfrac{y}{x}} = C_1 x.
$$

Simplify:

$$
\frac{\log\left(\dfrac{y}{x}\right) – 1}{y} = C_1.
$$

Hence, the general solution is

$$
\boxed{\log\left(\frac{y}{x}\right) – 1 = C y.}
$$

Final Answer

$$\boxed{\log\left(\frac{y}{x}\right) – 1 = C y}$$

Download Anand Classes notes for more solved differential equations โ€” perfect for JEE, CBSE, and competitive exam preparation.


NCERT Question.10 : Show that the given differential equation is homogeneous and solve it.
$$\left[1+e^{\dfrac{x}{y}}\right]dx + e^{\dfrac{x}{y}}\left(1-\dfrac{x}{y}\right)dy = 0$$

Solution
Given differential equation
$$\left[1+e^{\dfrac{x}{y}}\right]dx + e^{\dfrac{x}{y}}\left(1-\dfrac{x}{y}\right)dy = 0$$

Rearrange to obtain
$$\frac{dx}{dy} = -\frac{e^{\dfrac{x}{y}}\left(1-\dfrac{x}{y}\right)}{1+e^{\dfrac{x}{y}}}$$

This equation is homogeneous (depends on $x/y$). Let
$$v = \frac{x}{y}, \quad x = vy, \quad \frac{dx}{dy} = v + y\frac{dv}{dy}$$

Substitute in the equation:
$$v + y\frac{dv}{dy} = -\frac{e^v(1-v)}{1+e^v}$$

Simplify:
$$y\frac{dv}{dy} = -\frac{e^v(1-v) + v(1+e^v)}{1+e^v} = -\frac{v+e^v}{1+e^v}$$

Separate the variables:
$$\frac{1+e^v}{v+e^v}dv = -\frac{dy}{y}$$

Since
$$\frac{d}{dv}\ln(v+e^v) = \frac{1+e^v}{v+e^v}$$
Integrate both sides:
$$\ln(v+e^v) = -\ln|y| + C$$

Exponentiate and substitute $v = \dfrac{x}{y}$:
$$v + e^v = \frac{C_1}{y} \Rightarrow \frac{x}{y} + e^{\dfrac{x}{y}} = \frac{C_1}{y}$$

Multiply through by $y$:
$$x + y e^{\dfrac{x}{y}} = C$$

Final Answer

$$\boxed{x + y e^{\dfrac{x}{y}} = C}$$


NCERT Question 11 : Find the particular solution satisfying $y = 1$ when $x = 1$ for the differential equation
$$(x + y)dy + (x – y)dx = 0.$$

Solution :
Given Equation
$$(x + y)dy + (x – y)dx = 0.$$

Rearranging, we get

$$\frac{dy}{dx} = -\frac{x – y}{x + y}.$$

This equation is homogeneous. Let $y = vx$, where $v = \dfrac{y}{x}$ and hence $\dfrac{dy}{dx} = v + x\dfrac{dv}{dx}$.

Substitute into the equation:

$$v + x\frac{dv}{dx} = -\frac{1 – v}{1 + v}.$$

Simplifying,

$$x\frac{dv}{dx} = -\frac{1 – v}{1 + v} – v = -\frac{1 – v + v(1 + v)}{1 + v} = -\frac{1 + v^2}{1 + v}.$$

Separating the variables,

$$\frac{1 + v}{1 + v^2}dv = -\frac{dx}{x}.$$

Integrating both sides,

$$\int \frac{1 + v}{1 + v^2}dv = -\int \frac{dx}{x}.$$

We can split the integral:

$$\int \frac{1 + v}{1 + v^2}dv = \int \frac{dv}{1 + v^2} + \int \frac{vdv}{1 + v^2}.$$

Thus,

$$tan^{-1}v + \frac{1}{2}\ln(1 + v^2) = -\ln|x| + C.$$

Rewriting,

$$\ln|x| + \frac{1}{2}\ln(1 + v^2) + tan^{-1}v = C.$$

Substitute back $v = \dfrac{y}{x}$:

$$\frac{1}{2}\ln(x^2 + y^2) + tan^{-1}\left(\frac{y}{x}\right) = C.$$

Now, use the condition $y = 1$ when $x = 1$:

$$\frac{1}{2}\ln(1^2 + 1^2) + tan^{-1}(1) = \frac{1}{2}\ln 2 + \frac{\pi}{4} = C.$$

Hence, the particular solution is

$$\boxed{\frac{1}{2}\ln(x^2 + y^2) + tan^{-1}\left(\frac{y}{x}\right) = \frac{1}{2}\ln 2 + \frac{\pi}{4}}$$

or equivalently,

$$\boxed{\ln(x^2 + y^2) + 2tan^{-1}\left(\frac{y}{x}\right) = \ln 2 + \frac{\pi}{2}}.$$

Learn More with Anand Classes
Master homogeneous differential equations, integration techniques, and logarithmic transformations with detailed solutions by Anand Classes. Download expertly crafted notes and get top-quality study material โ€” perfect for JEE, NEET, and CBSE aspirants aiming for conceptual clarity and exam excellence.

โฌ…๏ธ NCERT Solutions Exercise 9.4 (Set-3) Differential Equations NCERT Solutions Exercise 9.4 Class 12 Math Chapter-9 PDF Free Download (Set-1) โžก๏ธ

๐Ÿ“š Buy Study Material & Join Our Coaching

For premium study materials specially designed for JEE, NEET, NDA, CDS, AFCAT, SSC Exams, visit our official study material portal:
๐Ÿ‘‰ https://publishers.anandclasses.co.in/

For JEE/NEET Notes : Visit https://anandclasses.in/

For NDA Notes : Visit https://nda.anandclasses.in/

For SSC Notes : Visit https://ssc.anandclasses.in/

For CDS, AFCAT Notes : Visit https://cds-afcat.anandclasses.in/

To enroll in our offline or online coaching programs, visit our coaching center website:
๐Ÿ‘‰ https://anandclasses.co.in/

๐Ÿ“ž Call us directly at: +91-94631-38669

๐Ÿ’ฌ WhatsApp Us Instantly

Need quick assistance or want to inquire about classes and materials?

๐Ÿ“ฒ Click below to chat instantly on WhatsApp:
๐Ÿ‘‰ Chat on WhatsApp

๐ŸŽฅ Watch Video Lectures

Get access to high-quality video lessons, concept explainers, and revision tips by subscribing to our official YouTube channel:
๐Ÿ‘‰ Neeraj Anand Classes โ€“ YouTube Channel

RELATED TOPICS