In a general manner, errors are basically of two types:
Systematic Errors
Random Errors
Table of Contents
Systematic Errors
The errors which occur only in one direction are called Systematic Errors. The direction may be positive or negative but not be both at the same time. Systematic error is also known as a Repetitive Error as it occurs because of default machines and incorrect experiment apparatus.These errors take place if the device which is used to take measurements is wrongly calibrated. Some sources of systematic errors are as follows:
Instrumental Errors: The errors which occur due to lack of accuracy in an instrument are called instrumental errors. Instrumental Error occurs due to following reasons:
If the instrument is not properly designed and is not accurate
The calibration of the instrument is incorrect
If the scale is worn off at edges or broken from somewhere
If an instrument is giving a wrong reading instead of actual one
Examples
If the markings of a thermometer are improperly calibrated, let’s say it’s 108°C instead of 100°C, then it is called An InstrumentalError
If a meter scale is worn off at its end
If pressure of atmosphere is 1 bar and the instrument is showing 1.5 bars, then it’s again an instrumental error
In a Vernier caliper, if the 0 of the main scale don’t coincide with that of Vernier scale then it is an instrumental error as the design of Vernier caliper is not proper
Imperfection in Technique: If the experiment is not performed under proper guidelines or physical conditions around are not constant, then this leads to imperfection in technique errors. These errors occur due to:
If the instrument is not used properly
If the instructions are not followed as per the rules of the experiment
If environment is not well-suited with external physical conditions
If the technique is not accurate
Example
If we place thermometer under the armpit instead of the tongue, the temperature will always come out to be lower than that of body, as the technique of using thermometer is incorrect
Personal Errors: These errors occur due to improper setting of apparatus, lack of observation skills in an experiment and are based on the carelessness of individual only. Personal errors depend on the user or student performing the experiment and have nothing to do with instrument settings.
Example
For measuring height of an object, if the student don’t place his head in a proper way, it may lead to parallax and readings won’t be correct
Random Errors
Random Errors are not fixed on general perimeters and depend on measurements to measurements. That’s why they are named Random errors as they are random in nature. Random errors are also defined as fluctuations in statistical readings due to limitations of precisions in the instrument. Random errors occur due to:
Example
We can only reduce random errors and can’t eliminate them completely as they are unpredictable and not fixed in nature as systematic errors are.
Least Count Error
The smallest value that can be measured in an instrument is called Least Count of the Instrument. Least count defines the main part of a measurement and occurs in both random as well as systematic Errors
Least Count Error depends on the resolution of the instrument. The Least Count Error can be calculated if we know the observations and least count of instruments. The table given below shows least count of some instruments.
Instrument
Least count
Vernier Caliper
0.01 cm
Spherometer
0.001 cm
Micrometer
0.0001 cm
We use high-precision instruments in order to improve experiment techniques, thereby reducing least count error. To reduce least count error, we perform the experiment several times and take arithmetic mean of all the observations. The mean value is always almost close to the actual value of the measurement.
Combination of Errors
When we perform a physics experiment we have to deal with a number of errors involved. The errors can be in addition or subtraction form or may be in division or multiplication form. For Example, pressure is defined as force per unit area, and then if there is some error in force and area, there are chances that there will be an error in pressure too. Now how to calculate that error? There are two ways to calculate combined errors, they are:
Error of a sum or difference
Error in product or quotient
Error in case of a measured quantity raised to a power
Error of a sum or difference
Let’s say two physical quantities A and B have actual values as A ± ΔA and B ± ΔB, then the error in their sum C can be calculated as
C = A + B, then maximum error in C will be
ΔC = ΔA + ΔB, for difference also follow the same formula. Remember that when two quantities are added or subtracted, the absolute error in the final answer will always be the sum of individual absolute errors.
Example
The length of two scales is given as l1 = 20 cm ± 0.5 cm and l2 = 30 cm ± 0.5 cm, then the final length by adding length of both scales will be given as 50cm ± 1 cm
Error of a product or quotient
When two quantities are divided or multiplied, the relative error in the final answer is given as sum of relative error of each quantity
Suppose A and B are two quantities, with absolute error ΔA and ΔB and C is the product of A and B, that is, C = AB, then the relative error in C can be calculated as:
ΔC/C = ΔA/A + ΔB/B
Example
The mass of a substance is 100 ± 5 g and volume is 200 ± 10 cm3, then the relative error in density will be the sum of percentage error in mass that is 5/100 × 100 = 5% and percentage error in volume that is 10/200 ×100 = 5%, which is 10%.
Error in case of a measured quantity rose to some power
The relative error in physical quantity raised to a power‘s’ can be calculated by multiplying ‘s’ with a relative error of the physical quantity.
Suppose, there exist a quantity S = A2, where A is any measured quantity, then relative error in S will be given as:
The relative error in S = A3B4C2, will be written as,
ΔS/S = 3ΔA/A + 4ΔB/B + 2 ΔC/C
Neeraj Anand, Param Anand
Er. Neeraj K.Anand is a freelance mentor and writer who specializes in Engineering & Science subjects. Neeraj Anand received a B.Tech degree in Electronics and Communication Engineering from N.I.T Warangal & M.Tech Post Graduation from IETE, New Delhi. He has over 30 years of teaching experience and serves as the Head of Department of ANAND CLASSES. He concentrated all his energy and experiences in academics and subsequently grew up as one of the best mentors in the country for students aspiring for success in competitive examinations.
In parallel, he started a Technical Publication "ANAND TECHNICAL PUBLISHERS" in 2002 and Educational Newspaper "NATIONAL EDUCATION NEWS" in 2014 at Jalandhar. Now he is a Director of leading publication "ANAND TECHNICAL PUBLISHERS", "ANAND CLASSES" and "NATIONAL EDUCATION NEWS".
He has published more than hundred books in the field of Physics, Mathematics, Computers and Information Technology. Besides this he has written many books to help students prepare for IIT-JEE and AIPMT entrance exams. He is an executive member of the IEEE (Institute of Electrical & Electronics Engineers. USA) and honorary member of many Indian scientific societies such as Institution of Electronics & Telecommunication Engineers, Aeronautical Society of India, Bioinformatics Institute of India, Institution of Engineers. He has got award from American Biographical Institute Board of International Research in the year 2005.
Below we have provided the details of the CBSE Physics topics under each unit as per the revised CBSE Class 11 Physics Syllabus for the 2023-24 academic year. Go through it to get the details of the chapters given below.
Unit-I: Physical World and Measurement
Chapter 2: Units and Measurements
Need for measurement: Units of measurement; systems of units; SI units, fundamental and derived units. Length, mass and time measurements; accuracy and precision of measuring instruments; errors in measurement; significant figures.
Dimensions of physical quantities, dimensional analysis and its applications.
Unit-II: Kinematics
Chapter 3: Motion in a Straight Line
Frame of reference, Motion in a straight line, Elementary concepts of differentiation and integration for describing motion, uniform and nonuniform motion, and instantaneous velocity, uniformly accelerated motion, velocity-time and position-time graphs. Relations for uniformly accelerated motion (graphical treatment).
Chapter 4: Motion in a Plane
Scalar and vector quantities; position and displacement vectors, general vectors and their notations; equality of vectors, multiplication of vectors by a real number; addition and subtraction of vectors, relative velocity, Unit vector; resolution of a vector in a plane, rectangular components, Scalar and Vector product of vectors.
Motion in a plane, cases of uniform velocity and uniform acceleration-projectile motion, uniform circular motion.
Unit-III: Laws of Motion
Chapter 5: Laws of Motion
Intuitive concept of force, Inertia, Newton’s first law of motion; momentum and Newton’s second law of motion; impulse; Newton’s third law of motion (recapitulation only). Law of conservation of linear momentum and its applications. Equilibrium of concurrent forces, Static and kinetic friction, laws of friction, rolling friction, lubrication.
Dynamics of uniform circular motion: Centripetal force, examples of circular motion (vehicle on a level circular road, vehicle on a banked road).
Unit-IV: Work, Energy and Power
Chapter 6: Work, Energy and Power
Work done by a constant force and a variable force; kinetic energy, work-energy theorem, power.
Notion of potential energy, potential energy of a spring, conservative forces: conservation of mechanical energy (kinetic and potential energies); non-conservative forces: motion in a vertical circle; elastic and inelastic collisions in one and two dimensions.
Unit-V: Motion of System of Particles and Rigid Body
Chapter 7: System of Particles and Rotational Motion
Centre of mass of a two-particle system, momentum conservation and centre of mass motion. Centre of mass of a rigid body; centre of mass of a uniform rod. Moment of a force, torque, angular momentum, law of conservation of angular momentum and its applications.
Equilibrium of rigid bodies, rigid body rotation and equations of rotational motion, comparison of linear and rotational motions.
Moment of inertia, radius of gyration, values of moments of inertia for simple geometrical objects (no derivation).
Unit-VI: Gravitation
Chapter 8: Gravitation
Kepler’s laws of planetary motion, universal law of gravitation. Acceleration due to gravity and its variation with altitude and depth. Gravitational potential energy and gravitational potential, escape speed, orbital velocity of a satellite.
Unit-VII: Properties of Bulk Matter
Chapter 9: Mechanical Properties of Solids
Elasticity, Stress-strain relationship, Hooke’s law, Young’s modulus, bulk modulus, shear modulus of rigidity (qualitative idea only), Poisson’s ratio; elastic energy.
Chapter 10: Mechanical Properties of Fluids
Pressure due to a fluid column; Pascal’s law and its applications (hydraulic lift and hydraulic brakes), effect of gravity on fluid pressure.
Viscosity, Stokes’ law, terminal velocity, streamline and turbulent flow, critical velocity, Bernoulli’s theorem and its applications.
Surface energy and surface tension, angle of contact, excess of pressure across a curved surface, application of surface tension ideas to drops, bubbles and capillary rise.
Chapter 11: Thermal Properties of Matter
Heat, temperature,( recapitulation only) thermal expansion; thermal expansion of solids, liquids and gases, anomalous expansion of water; specific heat capacity; Cp, Cv – calorimetry; change of state – latent heat capacity.
Heat transfer-conduction, convection and radiation (recapitulation only), thermal conductivity, qualitative ideas of Blackbody radiation, Wein’s displacement Law, Stefan’s law.
Unit-VIII: Thermodynamics
Chapter 12: Thermodynamics
Thermal equilibrium and definition of temperature (zeroth law of thermodynamics), heat, work and internal energy. First law of thermodynamics, Second law of thermodynamics: gaseous state of matter, change of condition of gaseous state -isothermal, adiabatic, reversible, irreversible, and cyclic processes.
Unit-IX: Behaviour of Perfect Gases and Kinetic Theory of Gases
Chapter 13: Kinetic Theory
Equation of state of a perfect gas, work done in compressing a gas.
Kinetic theory of gases – assumptions, concept of pressure. Kinetic interpretation of temperature; rms speed of gas molecules; degrees of freedom, law of equi-partition of energy (statement only) and application to specific heat capacities of gases; concept of mean free path, Avogadro’s number.
Unit-X: Oscillations and Waves
Chapter 14: Oscillations
Periodic motion – time period, frequency, displacement as a function of time, periodic functions and their application.
Simple harmonic motion (S.H.M) and its equations of motion; phase; oscillations of a loaded spring- restoring force and force constant; energy in S.H.M. Kinetic and potential energies; simple pendulum derivation of expression for its time period.
Chapter 15: Waves
Wave motion: Transverse and longitudinal waves, speed of travelling wave, displacement relation for a progressive wave, principle of superposition of waves, reflection of waves, standing waves in strings and organ pipes, fundamental mode and harmonics, Beats.
Students can also access the syllabus for other subjects by visiting Syllabus page of CBSE Class 11.
CBSE Syllabus for Class 11 Physics Practical
Below are the list of the experiments of Physics practicals.
Evaluation Scheme for Class 11 Physics Practical 2023-24
Topic
Marks
Two experiments, one from each section
7 + 7
Practical record (experiment and activities)
5
One activity from any section
3
Investigatory Project
3
Viva on experiments, activities and project
5
Total
30
CBSE Class 11 Physics Practical Syllabus
Section – A
CBSE 11 Physics Syllabus Experiments
1. To measure the diameter of a small spherical/cylindrical body and to measure internal diameter and depth of a given beaker/calorimeter using Vernier Callipers and hence find its volume. 2. To measure the diameter of a given wire and thickness of a given sheet using screw gauge. 3. To determine the volume of an irregular lamina using the screw gauge. 4. To determine the radius of curvature of a given spherical surface by a spherometer. 5. To determine the mass of two different objects using a beam balance. 6. To find the weight of a given body using parallelogram law of vectors. 7. Using a simple pendulum, plot its L-T2 graph and use it to find the effective length of second’s pendulum. 8. To study variation of time period of a simple pendulum of a given length by taking bobs of same size but different masses and interpret the result. 9. To study the relationship between force of limiting friction and normal reaction and to find the co- efficient of friction between a block and a horizontal surface. 10. To find the downward force, along an inclined plane, acting on a roller due to gravitational pull of the earth and study its relationship with the angle of inclination θ by plotting graph between force and sin θ.
CBSE 11 Physics Syllabus Activities
1. To make a paper scale of given least count, e.g., 0.2cm, 0.5 cm. 2. To determine mass of a given body using a metre scale by principle of moments. 3. To plot a graph for a given set of data, with proper choice of scales and error bars. 4. To measure the force of limiting friction for rolling of a roller on a horizontal plane. 5. To study the variation in range of a projectile with angle of projection. 6. To study the conservation of energy of a ball rolling down on an inclined plane (using a double inclined plane). 7. To study dissipation of energy of a simple pendulum by plotting a graph between square of amplitude and time.
Section – B
CBSE 11 Physics Syllabus Experiments
1. To determine Young’s modulus of elasticity of the material of a given wire. 2. To find the force constant of a helical spring by plotting a graph between load and extension. 3. To study the variation in volume with pressure for a sample of air at constant temperature by plotting graphs between P and V, and between P and 1/V. 4. To determine the surface tension of water by capillary rise method. 5. To determine the coefficient of viscosity of a given viscous liquid by measuring terminal velocity of a given spherical body. 6. To study the relationship between the temperature of a hot body and time by plotting a cooling curve. 7. To determine specific heat capacity of a given solid by method of mixtures. 8. To study the relation between frequency and length of a given wire under constant tension using sonometer. 9. To study the relation between the length of a given wire and tension for constant frequency using sonometer. 10. To find the speed of sound in air at room temperature using a resonance tube by two resonance positions.
CBSE 11 Physics Syllabus Activities
1. To observe change of state and plot a cooling curve for molten wax. 2. To observe and explain the effect of heating on a bi-metallic strip. 3. To note the change in level of liquid in a container on heating and interpret the observations. 4. To study the effect of detergent on surface tension of water by observing capillary rise. 5. To study the factors affecting the rate of loss of heat of a liquid. 6. To study the effect of load on depression of a suitably clamped metre scale loaded at (i) its end (ii) in the middle. 7. To observe the decrease in pressure with increase in velocity of a fluid.
Practical Examination for Visually Impaired Students of Class 11 Evaluation Scheme
Time: 2 Hours Max. Marks: 30
Topic
Marks
Identification/Familiarity with the apparatus
5
Written test (based on given/prescribed practicals)
10
Practical Record
5
Viva
10
Total
30
A. Items for Identification/Familiarity of the apparatus for assessment in practicals (All experiments).
Spherical ball, Cylindrical objects, vernier calipers, beaker, calorimeter, Screw gauge, wire, Beam balance, spring balance, weight box, gram and milligram weights, forcep, Parallelogram law of vectors apparatus, pulleys and pans used in the same ‘weights’ used, Bob and string used in a simple pendulum, meter scale, split cork, suspension arrangement, stop clock/stop watch, Helical spring, suspension arrangement used, weights, arrangement used for measuring extension, Sonometer, Wedges, pan and pulley used in it, ‘weights’ Tuning Fork, Meter scale, Beam balance, Weight box, gram and milligram weights, forceps, Resonance Tube, Tuning Fork, Meter scale, Flask/Beaker used for adding water.
B. List of Practicals
1. To measure diameter of a small spherical/cylindrical body using vernier calipers. 2. To measure the internal diameter and depth of a given beaker/calorimeter using vernier calipers and hence find its volume. 3. To measure diameter of given wire using screw gauge. 4. To measure thickness of a given sheet using screw gauge. 5. To determine the mass of a given object using a beam balance. 6. To find the weight of given body using the parallelogram law of vectors. 7. Using a simple pendulum plot L-T and L-T2 graphs. Hence find the effective length of second’s pendulum using appropriate length values. 8. To find the force constant of given helical spring by plotting a graph between load and extension. 9. (i) To study the relation between frequency and length of a given wire under constant tension using a sonometer. (ii) To study the relation between the length of a given wire and tension, for constant frequency, using a sonometer. 10. To find the speed of sound in air, at room temperature, using a resonance tube, by observing the two resonance positions.
Note: The above practicals of CBSE 11 Physics Syllabus may be carried out in an experiential manner rather than recording observations.
Did you find CBSE 11 Physics Syllabus useful for your studies? Do let us know your view in the comment section. Get access to interactive lessons and videos related to CBSE Maths and Science with ANAND CLASSES (A School Of Competitions) – The Learning App.
Frequently Asked Questions on CBSE Class 11 Physics Syllabus
Q1
According to the CBSE Class 11 Physics Syllabus, which are the units of high marks weightage?
According to the CBSE Class 11 Physics Syllabus, physical world and measurement, kinematics and laws of motion are the units of high-mark weightage.
Q2
How is the practical syllabus of the CBSE Class 11 Physics divided into sections A and B?
The practical syllabus of the CBSE Class 11 Physics contains 10 experiments in section A and 10 experiments in section B with 7 physical activities mentioned for each.
Q3
Which are the basic concepts present in the CBSE Syllabus for Class 11 Physics?
The basic concepts present in the CBSE Syllabus for Class 11 Physics are Thermodynamics, Laws of Motion, Oscillations and Waves.
Anand Technical Publishers
Buy Products (Printed Books & eBooks) of Anand Classes published by Anand Technical Publishers, Visit at following link :