NCERT Solutions Class 11 – Chapter 4 Complex Numbers And Quadratic Equations – Miscellaneous Exercise – GeeksforGeeks

NCERT Solutions Class 11 – Chapter 4 Complex Numbers And Quadratic Equations – Miscellaneous Exercise

Last Updated :
19 Apr, 2024

Comments

Improve



Suggest changes

Like Article

Like

<!– –>

<!–


Share

–>


Report

<!– –>


<!–


News
Follow

–>

var video_api_response = JSON.parse(“[]”);

Question 1. Evaluate left[i^{18}+left(frac{1}{i}right)^{25}right]^3

Solution:

displaystyleleft[i^{18}+left(frac{1}{i}right)^{25}right]^3\ =left[i^{4times4+2}+frac{1}{i^{4times6+1}}right]^3\ =left[(i^4)^{4}.i^2+frac{1}{(i^4)^6.i}right]^3\ =left[i^2+frac{1}{i}right]^3 [i^4=1]\ =left[-1+frac{1}{i}timesfrac{i}{i}right]^3 [i^2=-1]\ =left[-1+frac{i}{i^2}right]^3

= [-1 – i]3

= (-1)3 [1 + i]3

= -[13 + i3 + 3 × 1 × i (1 + i)]

= -[1 + i3 + 3i + 3i2]

= -[1 – i + 3i – 3]

= -[2 + 2i]

= 2 – 2i 

Question 2. For any two complex numbers z1 and z2, prove that, Re (z1z2) = Re zRe z2 – Im z1 Im z2

Solution:

Let’s assume z1 = x1 + iy1 and z2 = x2 + iy2 as two complex numbers

Product of these complex numbers, z1z2

z1z2 = (x1 + iy1)(x2 + iy2)

= x1(x2 + iy2) + iy1(x2 + iy2)

= x1x2 + ix1y2 + iy1x2 + i2y1y2

= x1x2 + ix1y2 + iy1x2 – y1y2             [i2 = -1]

= (x1x2 – y1y2) + i(x1y2 + y1x2)

Now, 

Re(z1z2) = x1x2 – y1y2

⇒ Re(z1z2) = Rez1Rez2 – Imz1Imz2

Hence, proved.

Question 3. Reduce to the standard form displaystyleleft(frac{1}{1-4i}-frac{2}{1+i}right)left(frac{3-4i}{5+i}right)

Solution:

displaystyleleft(frac{1}{1-4i}-frac{2}{1+i}right)left(frac{3-4i}{5+i}right)=left[frac{(1+i)-2(1-4i)}{(1-4i)(1+i)}right]left[frac{3-4i}{5+i}right]\ = left[frac{1+i-2+8i}{1+i-4i-4i^2}right] left[frac{3-4i}{5+i}right]= left[frac{-1+9i}{5-3i}right] left[frac{3-4i}{5+i}right]\ =  left[frac{-3+4i+27i-36i^2}{25+5i-15i-3i^2}right]=frac{33+31i}{28-10i}=frac{33+31i}{2(14-5i)}\ = frac{(33+31i)}{2(14-5i)}timesfrac{14+5i}{14+5i}

On multiplying numerator and denominator by (14+5i)

\ =frac{462+165i+434i+155i^2}{2[(14)^2-(5i)^2]}=frac{307+599i}{2(196-25i^2)}\ =frac{307+599i}{2(221)}=frac{307+599i}{442}=frac{307}{442}+frac{599i}{442}

Hence, this is the required standard form.

Question 4. If x – iy = sqrt{frac{a-ib}{c-id}}  prove that (x2 + y2)2=frac{a^2+b^2}{c^2+d^2}

Solution:

Given:

x – iy = sqrt{frac{a-ib}{c-id}}

=sqrt{frac{a-ib}{c-id}timesfrac{c+id}{c+id}}

On multiplying numerator and denominator by (c+id)

\ =sqrt{frac{(ac+bd)+i(ad-bc)}{c^2+d^2}}

So,

(x – iy)2=frac{(ac+bd)+i(ad-bc)}{c^2+d^2}  

x2 – y2 – 2ixy  =frac{(ac+bd)+i(ad-bc)}{c^2+d^2}

On comparing real and imaginary parts, we get

x2 – y2 frac{ac+bd}{c^2+d^2} , -2xy = frac{ad-bc}{c^2+d^2}        (1)

(x2 + y2)2 = (x2 – y2)2 + 4x2y2

left( frac{ac+bd}{c^2+d^2}right)^2+left(frac{ad-bc}{c^2+d^2} right)^2 [Using (1)\ =frac{a^2c^2+b^2d^2+2acbd+a^2d^2+b^2c^2-2adbc}{(c^2+d^2)^2}\ =frac{a^2c^2+b^2d^2+a^2d^2+b^2c^2}{(c^2+d^2)^2}\ = frac{a^2(c^2+d^2)+b^2(c^2+d^2)}{(c^2+d^2)^2}\ =frac{(c^2+d^2)(a^2+b^2)}{(c^2+d^2)^2}\ = frac{a^2+b^2}{c^2+d^2}

Hence proved

Question 5. If z1 = 2 – i, z2 = 1 + i, find left|frac{z_1+z_2+1}{z_1-z_2+1}right|

Solution:

Given, z1 = 2 – i, z2 = 1 + i

left|frac{z_1+z_2+1}{z_1-z_2+1}right|=left|frac{(2-i)+(1+i)+1}{(2-i)-(1+i)+1}right|\ =left|frac{4}{2-2i}right|=left|frac{4}{2(1-i)}right|\ =left|frac{2}{1-i}timesfrac{1+i}{1+i}right|=left|frac{2(1+i)}{1^2-i^2}right|\ =left|frac{2(1+i)}{1+1}right| [i^2=-1]\ =left|frac{2(1+i)}{2}right|\ =|1+i|=sqrt{1^2+1^2}=sqrt2

Hence, the value of left|frac{z_1+z_2+1}{z_1-z_2+1}right| is √2

Question 6. If a + ib =  frac{(x+i)^2}{2x^2+1}, prove that a2 + b2frac{(x^2+i)^2}{(2x^2+1)^2}

Solution:

Given:

a + ib = frac{(x+i)^2}{2x^2+1}\ =frac{x^2+i^2+2xi}{2x^2+1}\ =frac{x^2-1+i2x}{2x^2+1}\ =frac{x^2-1}{2x^2+1}+ileft(frac{2x}{2x^2+1}right)

On comparing the real and imaginary parts, we have

a = frac{(x-1)}{2x^2+1}    and b = frac{2x}{2x^2+1}

Therefore,

a2 + b2left(frac{x^2-1}{2x^2+1}right)^2+left(frac{2x}{2x^2+1}right)^2\ =frac{x^4+1-2x^2+4x^2}{(2x+1)^2}\ =frac{x^4+1+2x^2}{(2x^2+1)^2}\ =frac{(x^2+1)^2}{(2x^2+1)^2}

Hence, proved,

a2 + b2frac{(x^2+1)^2}{(2x^2+1)^2}

Question 7. Let z1 = 2 – i, z2 = -2 + i. Find

(i) Releft(frac{z_1z_2}{overline{z_1}}right)

(ii) Imleft(frac{1}{z_1overline{z_2}}right)

Solution:

(i) Given:

z1 = 2 – i, z2 = -2 + i

(i) z1z2 = (2 – i)(-2 + i) = -4 + 2i + 2i – i2 = -4 + 4i – (-1) = -3 + 4i

overline{z_1} = 2 + i

Therefore,

frac{z_1z_2}{overline{z_1}}=frac{-3+4i}{2+i}

On multiplying numerator and denominator by (2 – i), we get

frac{z_1z_2}{overline{z_1}}=frac{(-3+4i)(2-i)}{(2+i)(2-i)}=frac{-6+3i+8i-4i^2}{2^2+1^2}=frac{-6+11i-4(-1)}{2^2+1^2}\ =frac{-2+11i}{5}=frac{-2}{5}+frac{11}{5}i

On comparing the real parts, we have

Releft(frac{z_1z_2}{overline{z_1}}right)=frac{-2}{5}

(ii) frac{1}{z_1overline{z_2}}=frac{1}{(2-1)(2+i)}=frac{1}{(2)^2+(1)^2}=frac{1}{5}\

On comparing the imaginary part, we get

Imleft(frac{1}{z_1overline{z_2}}right) = 0

Question 8. Find the real numbers x and y if (x – iy) (3 + 5i) is the conjugate of – 6 – 24i.

Solution:

Let us assume z = (x – iy) (3 + 5i)

z = 3x + xi – 3yi – 5yi2 = 3x + 5xi – 3yi + 5y = (3x + 5y) + i(5x – 3y)

Therefore,

overline{z} =(3x + 5y) – i(5x – 3y)

Also given, overline{z}   = -6 – 24i 

And,

(3x + 5y) – i(5x – 3y) = -6 -24i

After equating real and imaginary parts, we get

3x + 5y = -6 …… (i)

5x – 3y = 24 …… (ii)

After doing (i) x 3 + (ii) x 5, we have

(9x + 15y) + (25x – 15y) = -18 + 120

34x = 102

x = 102/34 = 3

Putting the value of x in equation (i), we get

3(3) + 5y = -6

5y = -6 – 9 = -15

y = -3

Therefore, the values of and y are 3 and –3 respectively.

Question 9. Find the modulus of frac{1+i}{1-i}-frac{1-i}{1+i}

Solution:

frac{1+i}{1-i}-frac{1-i}{1+i}=frac{(1+i)^2-(1-i)^2}{(1-i)(1+i)}\ =frac{1+i^2+2i-1-i^2+2i}{1^2+1^2}\ =frac{4i}{2}=2i\ thereforeleft|frac{1+i}{1-i}-frac{1-i}{1+i}right|=|2i|=sqrt{2^2}=2

Question 10. If (x + iy)3 = u + iv, then show that frac{u}{y}+frac{v}{y} = 4(x2 – y2)

Solution:

(x + iy)3 = u + iv

x3 + (iy) + 3 × x × iy(x + iy) = u + iv

x3 + i3y3 + 3x2yi + 3xy2 = u + iv

x3 – iy3 + 3x2yi – 3xy2 = u + iv

(x3 – 3xy2) + i(3x2y – y3) = u + iv

On equating real and imaginary parts, we get

u = x3 – 3xy2, v = 3x2y – y3

frac{u}{x}+frac{v}{y}=frac{x^3-3xy^2}{x}+frac{3x^2y-y^3}{y}\ =frac{x(x^2-3y^2)}{x}+frac{y(3x^2y-y)}{y}

= x2 – 3y2 + 3x2 – y2

= 4x2 – 4y2

= 4(x2 – y2)

thereforefrac{u}{x}+frac{v}{y}=4(x^2-y^2)

Hence proved

Question 11. If α and β are different complex numbers with |β| = 1, then find left|frac{beta-alpha}{1-overline{alpha}beta}right|

Solution:

Assume α = a + ib and β = x + iy

Given: |β| = 1

So, sqrt{x^2+y^2}=1

= x2 + y2 = 1            ….(1)

left|frac{beta-alpha}{1-overline{alpha}beta}right|=left|frac{(x+iy)(a+ib)}{1-(a-ib)(x+iy)}right|\ =left|frac{(x-a)+i(y-b)}{1-(ax+aiy-ibx+by)}right|\ =left|frac{(x-a)+i(y-b)}{(1-ax-by)+i(bx-ay)}right|\ =left|frac{(x-a)+i(y-b)}{(1-ax-by)+i(bx-ay)}right| left[left|frac{z_1}{z_2}right|=left|frac{z_1}{z_2}right|right]\ =frac{sqrt{(x-a)^2+(y-b)^2}}{sqrt{(1-ax-by)^2+(bx-ay)^2}}\ =frac{sqrt{x^2+a^2-2ax+y^2+b^2-2by}}{sqrt{1+a^2x^2+b^2y^2-2ax+2abxy-2by+b^2x^2+a^2y^2-2abxy}}\ =frac{sqrt{(x^2+y^2)+a^2+b^2-2ax-2by}}{sqrt{1+a^2(x^2+y^2)+b^2(y^2+x^2)-2ax-2by}}\ =frac{sqrt{1+a^2+b^2-2ax-2by}}{sqrt{1+a^2+b^2-2ax-2by}} [Using (1)]  

= 1

thereforeleft|frac{beta-alpha}{1-overline{alpha}beta}right|=1

Question 12. Find the number of non-zero integral solutions of the equation |1 – i|x = 2x

Solution:

|1 – i|x = 2t

(sqrt{1^2+(-1)^2})^x=2^x\ (sqrt2)^x=2^x\ 2^{frac{x}{2}}=2^x\ frac{x}{2}=x

x = 2x

2x – x = 0

Thus, ‘0’ is the only integral solution of the given equation.

Therefore, the number of non-zero integral solutions of the given equation is 0.

Question 13. If (a + ib) (c + id) (e + if) (g + ih) = A + iB, then show that (a2 + b2) (c2 + d2) (e2 + f2) (g2 + h2) = A2 + B2.

Solution:

Given:

(a + ib)(c + id)(e + if)(g + ih) = A + iB

Therefore,

|(a + ib)(c + id)(e + if)(g + ih)| = |A + iB|

= |(a + ib)| × |(c + id)| × |(e + if)| × |(g + ih)| = |A + iB|

sqrt{a^2+b^2}timessqrt{c^2+d^2}timessqrt{e^2+f^2}timessqrt{g^2+h^2}=sqrt{A^2+B^2}

On squaring both sides, we get

(a2 + b2) (c2 + d2) (e2 + f2) (g2 + h2) = A2 + B2

Hence, proved.

Question 14. If, then find the least positive integral value of m. left(frac{1+i}{1-i}right)^m=1

Solution:

left(frac{1+i}{1-i}right)^m=1

left(frac{1+i}{1-i}timesfrac{1+i}{1+i}right)^m=1\ left(frac{(1+i)^2}{1^2+1^2}right)^m=1\ left(frac{1-1+2i}{2}right)^m=1\ left(frac{2i}{2}right)^m=1

im = 1

Hence, m = 4k, where k is some integer.

Hence, the least positive integer is 1.

Thus, the least positive integral value of m is 4 (= 4 × 1).

const rawVideoDataMap = null;

// Convert it into a JS Map
const videoDataMap = new Map(Object.entries(rawVideoDataMap));

document.addEventListener(‘DOMContentLoaded’, function () {
let currentlySelectedTile = document.getElementById(“video-info-container-title”);
let firstVideoH2;
let firstSelectedVideo
var videoPlayer = document.getElementById(‘video-iframe-container’);
if (!videoPlayer) return;

var videoIframe = videoPlayer.querySelector(‘iframe’);
if (!videoIframe) return;

// Safely inject PHP data as JSON into JavaScript
var resp = null;

function postToIframeWhenReady(iframe, data, maxAttempts = 20, intervalTime = 100) {
let attempts = 0;
const interval = setInterval(() => {
if (iframe && iframe.contentWindow) {
try {
iframe.contentWindow.postMessage(data, ‘*’);
clearInterval(interval);
} catch (err) {
console.warn(“❌ Failed to postMessage, retrying…”);
}
}
if (++attempts >= maxAttempts) {
console.warn(“⚠️ postMessage failed: iframe not ready after multiple attempts.”);
clearInterval(interval);
}
}, intervalTime);
}

// Call the function right after iframe is confirmed to exist
videoIframe.onload = function () {
postToIframeWhenReady(videoIframe, { resp: resp, inView: false });
};

const playlistContainer = document.getElementById(“video-playlist-container”);
if(playlistContainer) {
firstSelectedVideo = playlistContainer.querySelectorAll(‘.playlist-video-tile’)[0];
if(firstSelectedVideo) {
firstVideoH2 = firstSelectedVideo.querySelector(‘h2’);
firstVideoH2.style.setProperty(‘color’, ‘var(–discussion-button-color)’, ‘important’);
}
}

function changeCurrentPlayingVideoTitle(tile, autoplayed = true) {
const playlistVideoTileHeading = tile.querySelector(‘h2’);
if (playlistVideoTileHeading) {
if(!autoplayed && firstVideoH2.innerText !== playlistVideoTileHeading.innerText) {
firstVideoH2.style.setProperty(‘color’, ‘#EC4E20’, ‘important’);
}
if(autoplayed) {
let siblingElement = tile.previousElementSibling;
const siblingElementH2 = siblingElement.querySelector(‘h2’);
siblingElementH2.style.setProperty(‘color’, ‘#EC4E20’, ‘important’);
firstVideoH2 = playlistVideoTileHeading;
}
playlistVideoTileHeading.style.setProperty(‘color’, ‘var(–discussion-button-color)’, ‘important’);
if (currentlySelectedTile) {
currentlySelectedTile.innerText = playlistVideoTileHeading.innerText;
}
}
}
// Inject the video data map as a JS object
window.addEventListener(‘message’, function (event) {
if (event.data.type === ‘AUTOPLAYED_NEXT_VIDEO’ && event.data.autoplayPlaylistEnabled) {

// Changing the current video index on autoplaying the next video from playlist
const allVideoTiles = Array.from(document.querySelectorAll(‘.playlist-video-tile’));
changeCurrentPlayingVideoTitle(allVideoTiles[event.data.currentVideoIndex]);
}
});

if(playlistContainer) {
playlistContainer.addEventListener(‘click’, (event) => {
const tile = event.target.closest(‘.playlist-video-tile’);

// Find the index of the clicked tile
const allTiles = Array.from(playlistContainer.querySelectorAll(‘.playlist-video-tile’));
const currentIndex = allTiles.findIndex((el) => el === tile);

if (tile) {
const videoId = tile.getAttribute(‘data-video-id’);
const videoData = videoDataMap.get(videoId);
videoIframe.contentWindow.postMessage({ playlist: [videoData], inView: true, clickedVideoFromPlaylist: true, currentIndex: currentIndex }, ‘*’);

// handleVideoTitle([videoData]);
changeCurrentPlayingVideoTitle(tile, false);
firstVideoH2 = tile.querySelector(‘h2’);
}
});
}
});

var video_api_response = JSON.parse(“[]”);

Explore

NCERT Exemplar Solutions (Q11 to 20) Chemical Bonding and Molecular Structure ➡️

📚 Buy Study Material & Join Our Coaching

For premium study materials specially designed for NDA Exam, visit our official study material portal:
👉 https://publishers.anandclasses.co.in/

For JEE/NEET Notes : Visit https://anandclasses.in/

To enroll in our offline or online coaching programs, visit our coaching center website:
👉 https://anandclasses.co.in/

📞 Call us directly at: +91-94631-38669

💬 WhatsApp Us Instantly

Need quick assistance or want to inquire about classes and materials?

📲 Click below to chat instantly on WhatsApp:
👉 Chat on WhatsApp

🎥 Watch Video Lectures

Get access to high-quality video lessons, concept explainers, and revision tips by subscribing to our official YouTube channel:
👉 Neeraj Anand Classes – YouTube Channel

RELATED TOPICS