Best JEE & NEET Physics, Chemistry, Biology, and Math Study Material – Anand Classes by Neeraj Anand (Published by Anand Technical Publishers)
If you are preparing for JEE Mains, JEE Advanced, or NEET, having the right study material can make all the difference. Anand Classes, authored by Neeraj Anand and published by Anand Technical Publishers, provides one of the most comprehensive, structured, and exam-oriented study materials for Physics, Chemistry, Biology, and Mathematics Subjects according to latest trends of JEE & NEET Entrance Exams.
Why Choose Anand Classes Study Material for JEE & NEET Preparation?
The study materials by Neeraj Anand are designed to simplify complex concepts, provide in-depth explanations, and offer ample practice questions to help students achieve top scores in competitive exams.
✅ Comprehensive Coverage – Detailed explanations of Physics, Chemistry, Biology, and Mathematics concepts.
✅ JEE & NEET Focused – Designed specifically for competitive exam success.
✅ Solved Examples & Practice Questions – Strengthen your understanding with concept-based problems.
✅ Short Tricks & Formulas – Easy-to-remember techniques for quick problem-solving.
✅ Concept Clarity: Easy-to-understand theory with step-by-step explanations.
✅ Topic-Wise Breakdown: Well-structured chapters following the latest syllabus of JEE Mains, JEE Advanced, and NEET.
✅ Solved Examples & Practice Questions: Includes previous year questions (PYQs), important formulas, and shortcut techniques.
✅ NCERT-Based & Advanced Level: Covers both board exam preparation and entrance exam syllabus for JEE & NEET aspirants.
✅ Time-Saving Tricks: Quick formulas, memory techniques, and problem-solving strategies.
📚 Subjects Covered in Anand Classes Study Material
🔵 Physics (For JEE & NEET)
- Kinematics & Laws of Motion
- Work, Power & Energy
- Gravitation & Fluid Mechanics
- Thermodynamics & Heat Transfer
- Electrostatics & Magnetism
- Optics & Modern Physics
- Semiconductor Electronics & Communication
🟠 Chemistry (For JEE & NEET)
Physical Chemistry
- Mole Concept & Stoichiometry
- Thermodynamics & Chemical Equilibrium
- Electrochemistry & Chemical Kinetics
Inorganic Chemistry
- Periodic Table & Chemical Bonding
- Coordination Compounds & Metallurgy
- P-Block, D-Block & F-Block Elements
Organic Chemistry
- Hydrocarbons & Functional Groups
- Reaction Mechanisms & Named Reactions
- Biomolecules & Polymers
🟢 Biology (For NEET)
- Diversity in the Living World
- Cell Structure & Function
- Genetics & Evolution
- Human Physiology & Reproduction
- Ecology & Environment
🔴 Mathematics (For JEE Mains & Advanced)
Permutation, Combination & Complex Numbers
Algebra & Probability
Trigonometry & Coordinate Geometry
Calculus (Differential & Integral)
Vectors & 3D Geometry
📥 Download PDF & Purchase the Study Material
The Anand Classes Study Material is available in PDF format and hardcopy. You can access high-quality notes, question banks, and practice tests to boost your JEE & NEET preparation.
🔹 Download Now: Get the latest edition PDF for easy access on mobile, tablet, or laptop.
🔹 Buy Hardcopy: Order the printed book for detailed study and offline preparation.
📌 Published by: Anand Technical Publishers
📌 Author: Neeraj Anand
Integral is the method to sum the functions on a large scale. Hence, here we have discussed integrals of some particular functions which are usually used for calculations. These integrals have huge applications in real life, such as finding the area between curves, volume, the average value of the function, kinetic energy, center of mass, work-done, etc.
We have already discussed the Integration of functions, Methods of Integration, Integration of Trigonometric functions, Integration of Inverse trigonometric functions, etc.
In this article, you will learn the integration of some of the important functions and see their use in many other standard integrals.
Table of Contents
Integrals of Some Particular Functions
- ∫1/(x2 – a2) dx = (1/2a) log|(x – a)/(x + a)| + C
- ∫1/(a2 – x2) dx = (1/2a) log|(a + x)/(a – x)| + C
- ∫1/(x2 + a2) dx = (1/a) tan-1(x/a) + C
- ∫1/√(x2 – a2) dx = log|x + √(x2 – a2)| + C
- ∫1/√(a2 – x2) dx = sin-1(x/a) + C
- ∫1/√(x2 + a2) dx = log|x + √(x2 + a2)| + C
These are tabulated below along with the meaning of each part.
S.No | Integral function | Integral value |
1 | \(\begin{array}{l}\int \frac{dx}{x^{2}- a^{2}}\end{array} \) | \(\begin{array}{l}\frac{1}{2a} \log \left | \frac{x-a}{x+a} \right | + C\end{array} \) |
2 | \(\begin{array}{l}\int \frac{dx}{a^{2}- x^{2}}\end{array} \) | \(\begin{array}{l}\frac{1}{2a} \log \left | \frac{a+x}{a-x} \right | + C\end{array} \) |
3 | \(\begin{array}{l}\int \frac{dx}{x^{2} + a^{2}}\end{array} \) | \(\begin{array}{l}\frac{1}{a}\tan^{-1}\left ( \frac{x}{a} \right ) + C\end{array} \) |
4 | \(\begin{array}{l}\int \frac{dx}{\sqrt{x^{2} – a^{2}}}\end{array} \) | \(\begin{array}{l}\log \left | x + \sqrt{x^{2}- a^{2}} \right | + C\end{array} \) |
5 | \(\begin{array}{l}\int \frac{dx}{\sqrt{a^{2} – x^{2}}}\end{array} \) | \(\begin{array}{l}\sin^{-1}\left ( \frac{x}{a} \right ) + C\end{array} \) |
6 | \(\begin{array}{l}\int \frac{dx}{\sqrt{x^{2} + a^{2}}}\end{array} \) | \(\begin{array}{l}\log \left | x + \sqrt{x^{2} + a^{2}} \right | + C\end{array} \) |
Also, see:
Proofs of Integrals Functions
Let us now prove the integration of particular functions.
Integral of function 1
(1)
\(\begin{array}{l}\large \mathbf{\int \frac{dx}{x^{2} – a^{2}} = \frac{1}{2a} \log \left | \frac{x-a}{x+a} \right | + C }\end{array} \)
The integral function can be splitted into the sums of partial fraction, i.e.
\(\begin{array}{l} \int \frac{dx}{x^{2}- a^{2}} = \int \frac{dx}{(x-a)(x+a)}= \int \frac{A}{(x-a)}.dx + \int \frac{B}{(x+a)}.dx\end{array} \)
……………(i)
Solving for values of A and B, we have,
\(\begin{array}{l}1= A(x+a) + B(x-a)\end{array} \)
,
Putting x = a and then -a, we get the values of A and B to be
\(\begin{array}{l}\frac{1}{2a}\end{array} \)
and
\(\begin{array}{l}-\frac{1}{2a}\end{array} \)
respectively.
Substituting these values in (i), we have
\(\begin{array}{l}\int \frac{dx}{x^{2}- a^{2}} = \int \frac{dx}{2a(x-a)} + \int \frac{-dx}{2a(x+a)}\end{array} \)
\(\begin{array}{l}= \frac{1}{2a} \left [ \int \frac{dx}{(x-a)} – \int \frac{dx}{(x+a)} \right ]\end{array} \)
\(\begin{array}{l}= \frac{1}{2a} \left [ \log \left | x – a \right | – \log \left | x + a \right | \right ] + C\end{array} \)
\(\begin{array}{l}= \frac{1}{2a} \log \left | \frac{x – a}{x+a} \right | + C\end{array} \)
Integral of function 2
(2)
\(\begin{array}{l}\large \mathbf{\int \frac{dx}{a^{2}- x^{2}} = \frac{1}{2a} \log \left | \frac{a+x}{a-x} \right | + C }\end{array} \)
Breaking function into the sums of partial fraction, we have
\(\begin{array}{l}\int \frac{dx}{a^{2}- x^{2}} = \int \frac{A}{a-x}.dx + \int \frac{B}{a+x}.dx \end{array} \)
Solving for values of A and B, we have
\(\begin{array}{l}\int \frac{dx}{a^{2}- x^{2}} = \int \frac{dx}{2a(a-x)} + \int \frac{dx}{2a(a+x)}\end{array} \)
\(\begin{array}{l}=\frac{1}{2a} \left [ \int \frac{dx}{(a-x)} + \int \frac{dx}{(a+x)} \right ]\end{array} \)
\(\begin{array}{l}=\frac{1}{2a} \left [ -\log \left | a-x \right | + \log \left | a+x \right | \right ] + C\end{array} \)
\(\begin{array}{l}=\frac{1}{2a} \log \left | \frac{a+x}{a-x} \right | + C\end{array} \)
Integral of function 3
(3)
\(\begin{array}{l}\large \mathbf{\int \frac{dx}{x^{2} + a^{2}} = \frac{1}{a}\tan^{-1}\left ( \frac{x}{a} \right ) + C}\end{array} \)
Substituting
\(\begin{array}{l}x = a\tan \theta\end{array} \)
……….(i)
\(\begin{array}{l}dx = a\sec^{2} \theta .d\theta\end{array} \)
\(\begin{array}{l}\int \frac{dx}{x^{2} + a^{2}} = \int \frac{a \sec^{2}\theta .d\theta }{a^{2}\tan^{2}\theta + a^{2}}\end{array} \)
\(\begin{array}{l}= \frac{1}{a}\int \frac{\sec^{2}\theta .d\theta }{\ \sec^{2}\theta } = \frac{1}{a}\int d\theta\end{array} \)
\(\begin{array}{l}= \frac{1}{a} \theta + C\end{array} \)
………………(ii)
From (i), we know
\(\begin{array}{l}\theta = \tan^{-1}\frac{x}{a}\end{array} \)
,
therefore
\(\begin{array}{l}\int \frac{dx}{x^{2} + a^{2}} = \frac{1}{a}\tan^{-1} \frac{x}{a} + C\end{array} \)
Integral of function 4
(4)
\(\begin{array}{l}\large \mathbf{\int \frac{dx}{\sqrt{x^{2} – a^{2}}} = \log \left | x + \sqrt{x^{2}- a^{2}} \right | + C}\end{array} \)
Substituting
\(\begin{array}{l}x = a\sec \theta\end{array} \)
……….(i)
\(\begin{array}{l}dx = a\sec \theta \tan \theta .d\theta\end{array} \)
\(\begin{array}{l}\int \frac{dx}{\sqrt{x^{2} – a^{2}}} = \int \frac{a\sec \theta \tan \theta .d\theta}{\sqrt{a^{2}\sec^{2}\theta – a^{2}}}\end{array} \)
\(\begin{array}{l}= \int \frac{a\sec \theta \tan \theta .d\theta}{a \sqrt{\tan^{2}\theta }}\end{array} \)
\(\begin{array}{l}= \int \sec \theta . d\theta\end{array} \)
\(\begin{array}{l}= \log \left | \sec \theta + \tan \theta \right | + C_{1}\end{array} \)
……….(ii)
from (i) we know
\(\begin{array}{l}\sec \theta = \frac{x}{a}\end{array} \)
and
\(\begin{array}{l}\tan \theta = \sqrt{\sec^{2} \theta – 1 } = \sqrt{ \frac{x^{2}}{a^{2}} – 1}\end{array} \)
Substituting these values in equation (ii), we have
\(\begin{array}{l}\int \frac{dx}{\sqrt{x^{2} – a^{2}}} = \log \left | \frac{x}{a} + \sqrt{ \frac{x^{2}}{a^{2}}-1}\right | + C_{1}\end{array} \)
\(\begin{array}{l}= \log \left | \frac{x + \sqrt{x^{2}- a^{2}}}{a} \right | + C_{1}\end{array} \)
\(\begin{array}{l}= \log \left | x + \sqrt{x^{2}- a^{2}} \right | – \log \left | a \right |+ C_{1}\end{array} \)
\(\begin{array}{l}= \log \left | x + \sqrt{x^{2}- a^{2}} \right | + C\end{array} \)
,(where
\(\begin{array}{l}C = C_{1} + \log \left | a \right |\end{array} \)
)
Integral of function 5
(5)
\(\begin{array}{l}\large \mathbf{\int \frac{dx}{\sqrt{a^{2} – x^{2}}} = \sin^{-1}\left ( \frac{x}{a} \right ) + C}\end{array} \)
Putting
\(\begin{array}{l}x = a \sin \theta\end{array} \)
\(\begin{array}{l}dx = a \cos \theta .d \theta\end{array} \)
\(\begin{array}{l}\int \frac{dx}{\sqrt{a^{2} – x^{2}}} = \int \frac{a \cos \theta. d\theta}{\sqrt{a^{2}- a^{2}\sin^{2}\theta}}\end{array} \)
\(\begin{array}{l}= \int \frac{a \cos \theta. d\theta}{a \sqrt{1- \sin^{2}\theta}}\end{array} \)
\(\begin{array}{l}= \int \frac{a \cos \theta. d\theta}{a \cos\theta} = \int d\theta\end{array} \)
\(\begin{array}{l}= \theta + C\end{array} \)
\(\begin{array}{l}= \sin^{-1}\frac{x}{a} + C\end{array} \)
Integral of function 6
(6)
\(\begin{array}{l}\large \mathbf{\int \frac{dx}{\sqrt{x^{2} + a^{2}}} = \log \left | x + \sqrt{x^{2} + a^{2}} \right | + C}\end{array} \)
Putting
\(\begin{array}{l}x = a \tan \theta\end{array} \)
…………….(i)
\(\begin{array}{l}dx = a \sec^{2} \theta d\theta\end{array} \)
\(\begin{array}{l}\int \frac{dx}{\sqrt{x^{2} + a^{2}}} = \int \frac{a \sec^{2} \theta d\theta}{\sqrt{a^{2}\tan^{2}\theta + a^{2}}}\end{array} \)
\(\begin{array}{l}= \int \frac{a \sec^{2} \theta d\theta}{a\sqrt{\tan^{2}\theta + 1}} = \int \frac{a \sec^{2} \theta d\theta}{a\sqrt{\sec^{2}\theta}}\end{array} \)
\(\begin{array}{l}= \int \sec \theta.d\theta\end{array} \)
\(\begin{array}{l}= \log \left | \sec \theta + \tan \theta \right | + c \end{array} \)
……………….(ii)
From (i), we have
\(\begin{array}{l}\tan \theta = \frac{x}{a}\end{array} \)
and
\(\begin{array}{l}\sec \theta = \sqrt{\tan^{2}\theta + 1} = \sqrt{\frac{x^{2}}{a^{2}}+1}\end{array} \)
Putting these value in (ii), we get
\(\begin{array}{l}\int \frac{dx}{\sqrt{x^{2} + a^{2}}} = \log \left | \frac{x}{a} + \sqrt{\frac{x^{2}}{a^{2}}+1} \right | + c\end{array} \)
\(\begin{array}{l}= \log \left | \frac{x+ \sqrt{x^{2}+1}}{a} \right | + c\end{array} \)
\(\begin{array}{l}= \log \left | x+ \sqrt{x^{2}+1} \right | – \log a + c\end{array} \)
\(\begin{array}{l}= \log \left | x+ \sqrt{x^{2}+1} \right | + C\end{array} \)
(where
\(\begin{array}{l}C = c – \log a\end{array} \)
)
These standard formulae can be used to obtain new formulae and can be applied directly to evaluate other integrals.
Integral of Some More Functions
We have already discussed the integrals of the first six functions with proofs. Let us see integral of some more functions.
Integral of function 7
(7)
\(\begin{array}{l}\large \mathbf{\int \frac{dx}{ax^{2} + bx + c}}\end{array} \)
the denominator can be written as
\(\begin{array}{l}ax^{2} + bx + c = a\left [ x^{2} + \frac{b}{a}x + \frac{c}{a} \right ] = a\left [ \left ( x + \frac{b}{2a} \right )^{2} + \left ( \frac{c}{a} – \frac{b^{2}}{4a^{2}} \right )\right ]\end{array} \)
Substituting
\(\begin{array}{l}x + \frac{b}{2a} = t\end{array} \)
, so
\(\begin{array}{l}dx = dt\end{array} \)
Also
\(\begin{array}{l}\frac{c}{a} – \frac{b^{2}}{4a^{2}} = \pm k^{2}\end{array} \)
Hence the integral becomes,
\(\begin{array}{l}\int \frac{dx}{ax^{2} + bx + c} = \frac{1}{a}\int \frac{dt}{t^{2}\pm k^{2}}\end{array} \)
Integral of function 8
(8)
\(\begin{array}{l}\large \mathbf{\int \frac{px+q}{ax^{2} + bx + c}.dx}\end{array} \)
where p,q,a,b,c are constants
\(\begin{array}{l}px + q = A \frac{\mathrm{d} }{\mathrm{d} x}(ax^{2}+bx+c) = A (2ax+ b)+B\end{array} \)
we equate the coefficient of x of both the sides to determine the value of A and B, and hence the integral is reduced to one of the known forms.
Example Based on Integral of Function
Example: Find the Integral of the function \(\begin{array}{l}\large \int \frac{dx}{\sqrt{7x^{2}-2x}}\end{array} \) . Solution:The given function can be converted into the standard form \(\begin{array}{l}\large \int \frac{dx}{\sqrt{7x^{2}-2x}} = \int \frac{dx}{\sqrt{7}.\sqrt{x^{2}-\frac{2}{7}x}}\end{array} \) \(\begin{array}{l}\large = \frac{1}{\sqrt{7}}\int \frac{dx}{\sqrt{\left ( x- \frac{1}{7} \right )^{2}-\left ( \frac{1}{7} \right )^{2}}}\end{array} \) (completing the squares) Substituting \(\begin{array}{l}\large x – \frac{1}{7} = t\end{array} \) , so dx = dt therefore \(\begin{array}{l}\large \int \frac{dx}{\sqrt{7x^{2}-2x}} = \frac{1}{\sqrt{7}} \int \frac{dt}{\sqrt{t^{2}- \left ( \frac{1}{7} \right )^{2}}}\end{array} \) \(\begin{array}{l}\large = \frac{1}{\sqrt{7}} \log \left | t + \sqrt{t^{2}- \left ( \frac{1}{7} \right )^{2}} \right | + C\end{array} \) \(\begin{array}{l}\large = \frac{1}{\sqrt{7}} \log \left | x- \frac{1}{7} + \sqrt{\left ( x- \frac{1}{7} \right )^{2}- \left ( \frac{1}{7} \right )^{2}} \right | + C\end{array} \) \(\begin{array}{l}\large = \frac{1}{\sqrt{7}} \log \left | x- \frac{1}{7} + \sqrt{x^{2}-\frac{2}{7}x} \right | + C\end{array} \) < |
Go through the another example given below:
Example 2: Find the integral of given function ∫x-3(x + 1)dx Solution: Consider the function, f(x) = x-3(x + 1) = (x + 1)/x3 = (x/x3) + (1/x3) = (1/x2) + (1/x3) Now, ∫x-3(x + 1)dx = ∫ (1/x2) + (1/x3) dx = (-1/x) + (-1/2x2) + C = -(1/x) – (1/2x2) + C Therefore, ∫x-3(x + 1)dx = -(1/x) – (1/2x2) + C |
Integrals of Some Functions Questions
- Find the integral of the given function: ∫dx/(3x2 + 13x – 10)
- Find the integral of the given function: ∫dx/√(2x – x2)
- Evaluate: √(x + 3)/√(5 – 4x + x2) dx