Determinants-Properties-Differentiation and Integration of Determinants-Class 12 Math Notes Study Material free pdf download

Important Properties of Determinants

1. Reflection Property

The determinant remains unaltered if its rows are changed into columns and the columns into rows. This is known as the property of reflection.

2. All-zero Property

If all the elements of a row (or column) are zero, then the determinant is zero.

3. Proportionality (Repetition) Property

If all elements of a row (or column) are proportional (identical) to the elements of some other row (or column), then the determinant is zero.

4. Switching Property

The interchange of any two rows (or columns) of the determinant changes its sign.

5. Scalar Multiple Property

If all the elements of a row (or column) of a determinant are multiplied by a non-zero constant, then the determinant gets multiplied by the same constant.

6. Sum Property

\(\begin{array}{l}\left| \begin{matrix} {{a}_{1}}+{{b}_{1}} & {{c}_{1}} & {{d}_{1}} \\ {{a}_{2}}+{{b}_{2}} & {{c}_{2}} & {{d}_{2}} \\ {{a}_{3}}+{{b}_{3}} & {{c}_{3}} & {{d}_{3}} \\ \end{matrix} \right|=\left| \begin{matrix} {{a}_{1}} & {{c}_{1}} & {{d}_{1}} \\ {{a}_{2}} & {{c}_{2}} & {{d}_{2}} \\ {{a}_{3}} & {{c}_{3}} & {{d}_{3}} \\ \end{matrix} \right|+\left| \begin{matrix} {{b}_{1}} & {{c}_{1}} & {{d}_{1}} \\ {{b}_{2}} & {{c}_{2}} & {{d}_{2}} \\ {{b}_{3}} & {{c}_{3}} & {{d}_{3}} \\ \end{matrix} \right|\end{array} \)

7. Property of Invariance

\(\begin{array}{l}\left| \begin{matrix} {{a}_{1}} & {{b}_{1}} & {{c}_{1}} \\ {{a}_{2}} & {{b}_{2}} & {{c}_{2}} \\ {{a}_{3}} & {{b}_{3}} & {{c}_{3}} \\ \end{matrix} \right|=\left| \begin{matrix} {{a}_{1}}+\alpha {{b}_{1}}+\beta {{c}_{1}} & {{b}_{1}} & {{c}_{1}} \\ {{a}_{2}}+\alpha {{b}_{2}}+\beta {{c}_{2}} & {{b}_{2}} & {{c}_{2}} \\ {{a}_{3}}+\alpha {{b}_{3}}+\beta {{c}_{3}} & {{b}_{3}} & {{c}_{3}} \\ \end{matrix} \right|\end{array} \)

That is, a determinant remains unaltered under an operation of the form

Ci → Ci + αCj + βCk, where j, k ≠ i

Or

An operation of the form Ri → Ri + αRj + βRk, where j, k ≠ i.

8. Factor Property

If a determinant Δ becomes zero when we put x = α, then (x – α) is a factor of Δ.

9. Triangle Property

If all the elements of a determinant above or below the main diagonal consist of zeros, then the determinant is equal to the product of diagonal elements. That is,

\(\begin{array}{l}\left| \begin{matrix} {{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\ 0 & {{b}_{2}} & {{b}_{3}} \\ 0 & 0 & {{c}_{3}} \\ \end{matrix} \right|=\left| \begin{matrix} {{a}_{1}} & 0 & 0 \\ {{a}_{2}} & {{b}_{2}} & 0 \\ {{a}_{3}} & {{b}_{3}} & {{c}_{3}} \\ \end{matrix} \right|={{a}_{1}}{{b}_{2}}{{c}_{3}}\end{array} \)

10. Determinant of Cofactor Matrix

\(\begin{array}{l}\Delta =\left| \begin{matrix} {{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\ {{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\ {{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\ \end{matrix} \right|\;then \;{{\Delta }_{1}}=\left| \begin{matrix} {{C}_{11}} & {{C}_{12}} & {{C}_{13}} \\ {{C}_{21}} & {{C}_{22}} & {{C}_{23}} \\ {{C}_{31}} & {{C}_{32}} & {{C}_{33}} \\ \end{matrix} \right|\end{array} \)

Where Cij denotes the cofactor of the element aij in Δ.

Example Problems on Properties of Determinants

Question 1: Using properties of determinants, prove that

\(\begin{array}{l}\left| \begin{matrix} a & b & c \\ b & c & a \\ c & a & b \\ \end{matrix} \right|=\left( a+b+c \right)\left( ab+bc+ca-{{a}^{2}}-{{b}^{2}}-{{c}^{2}} \right)\end{array} \)

Solution:

By using invariance and scalar multiple properties of determinants, we can prove the given problem.

\(\begin{array}{l}\Delta =\left| \begin{matrix} a & b & c \\ b & c & a \\ c & a & b \\ \end{matrix} \right|\\=\left| \begin{matrix} a+b+c & b & c \\ b+c+a & c & a \\ c+a+b & a & b \\ \end{matrix} \right| [Operating {{C}_{1}}\to {{C}_{1}}+{{C}_{2}}+{{C}_{3}}]\end{array} \)

\(\begin{array}{l}=\left( a+b+c \right)\left| \begin{matrix} 1 & b & c \\ 1 & c & a \\ 1 & a & b \\ \end{matrix} \right|\\=\left( a+b+c \right)\left| \begin{matrix} 1 & b & c \\ 0 & c-b & a-c \\ 0 & a-b & b-c \\ \end{matrix} \right| [Operating \left( {{R}_{2}}\to {{R}_{2}}-{{R}_{1}}\,and\,{{R}_{3}}\to {{R}_{3}}-{{R}_{1}} \right)]\end{array} \)

= (a + b + c) [(c – b) (b – c) – (a – b) (a – c)]

=

\(\begin{array}{l}\left( a+b+c \right)\left( ab+bc+ca-{{a}^{2}}-{{b}^{2}}-{{c}^{2}} \right)\end{array} \)

Question 2: Prove the following identity

\(\begin{array}{l}\left| \begin{matrix} -{{\alpha }^{2}} & \beta \alpha & \gamma \alpha \\ \alpha \beta & -{{\beta }^{2}} & \gamma \beta \\ \alpha \gamma & \beta \gamma & -{{\gamma }^{2}} \\ \end{matrix} \right|=4{{\alpha }^{2}}{{\beta }^{2}}{{\gamma }^{2}}\end{array} \)

Solution:

Take

\(\begin{array}{l}\alpha,\beta,\gamma\end{array} \)

common from the L.H.S. and then by using scalar multiple properties and invariance property of determinant, we can prove the given problem.

\(\begin{array}{l}\Delta =\left| \begin{matrix} -{{\alpha }^{2}} & \beta \alpha & \gamma \alpha \\ \alpha \beta & -{{\beta }^{2}} & \gamma \beta \\ \alpha \gamma & \beta \gamma & -{{\gamma }^{2}} \\ \end{matrix} \right|\end{array} \)

\(\begin{array}{l}Taking \;\alpha ,\beta ,\gamma \; common\; from \;{{C}_{1}},{{C}_{2}},{{C}_{3}}\; \;respectively \;\;\Delta =\alpha \beta \gamma \left| \begin{matrix} -\alpha & \alpha & \alpha \\ \beta & -\beta & \beta \\ \gamma & \gamma & -\gamma \\ \end{matrix} \right|\end{array} \)

\(\begin{array}{l}Now \;taking\; [\alpha ,\beta ,\gamma ] \;common\; from \;{R}_{1},{R}_{2},{R}_{3}\;respectively\end{array} \)

\(\begin{array}{l}\Delta ={{\alpha }^{2}}{{\beta }^{2}}{{\gamma }^{2}}\left| \begin{matrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \\ \end{matrix} \right|\end{array} \)

Now applying and

\(\begin{array}{l}{R}_{3}\to {R}_{3}+{R}_{1}\;we\; have \;\Delta ={\alpha }^{2}{\beta }^{2}{\gamma }^{2}\left| \begin{matrix} -1 & 1 & 1 \\ 0 & 0 & 2 \\ 0 & 2 & 0 \\ \end{matrix} \right|\end{array} \)

\(\begin{array}{l}Now\; expanding\; along\; {{C}_{1}},\Delta {{\alpha }^{2}}\times {{\beta }^{2}}\left( -1 \right)\times {{\gamma }^{2}}\left( -1 \right)\left| \begin{matrix} 0 & 2 \\ 2 & 0 \\ \end{matrix} \right|=\;\;{{\alpha }^{2}}{{\beta }^{2}}\left( -1 \right){{\gamma }^{2}}\left( 0-4 \right)=4{{\alpha }^{2}}{{\beta }^{2}}{{\gamma }^{2}}\end{array} \)

Hence proved.

Question 3: Show that

\(\begin{array}{l}\left| \begin{matrix} \alpha & \beta & \gamma \\ \theta & \phi & \psi \\ \lambda & \mu & v \\ \end{matrix} \right|=\left| \begin{matrix} \beta & \mu & \phi \\ \alpha & \lambda & \theta \\ \gamma & v & \psi \\ \end{matrix} \right|\end{array} \)

Solution:

Interchange the rows and columns across the diagonal using the reflection property, and then using the switching property of the determinant, we can obtain the required result.

L.H.S. =

\(\begin{array}{l}\left| \begin{matrix} \alpha & \beta & \gamma \\ \theta & \phi & \psi \\ \lambda & \mu & v \\ \end{matrix} \right|=\left| \begin{matrix} \alpha & \theta & \lambda \\ \beta & \phi & \mu \\ \gamma & \psi & v \\ \end{matrix} \right|\end{array} \)

(Interchanging rows and columns across the diagonal)

\(\begin{array}{l}=\left( -1 \right)\left| \begin{matrix} \alpha & \lambda & \theta \\ \beta & \mu & \phi \\ \gamma & v & \psi \\ \end{matrix} \right|\\={{\left( -1 \right)}^{2}}\left| \begin{matrix} \beta & \mu & \phi \\ \alpha & \lambda & \theta \\ \gamma & v & \psi \\ \end{matrix} \right|\\=\left| \begin{matrix} \beta & \mu & \phi \\ \alpha & \lambda & \theta \\ \gamma & v & \psi \\ \end{matrix} \right|\end{array} \)

= R.H.S.

Question 4: If a, b, c are all different and if

\(\begin{array}{l}\left| \begin{matrix} a & {{a}^{2}} & 1+{{a}^{3}} \\ b & {{b}^{2}} & 1+{{b}^{3}} \\ c & {{c}^{2}} & 1+{{c}^{3}} \\ \end{matrix} \right|=0,\end{array} \)

prove that abc = –1.

Solution:

Split the given determinant using the sum property. Then, by using scalar multiple, switching and invariance properties of determinants, we can prove the given equation.

\(\begin{array}{l}D=\left| \begin{matrix} a & {{a}^{2}} & 1+{{a}^{3}} \\ b & {{b}^{2}} & 1+{{b}^{3}} \\ c & {{c}^{3}} & 1+{{c}^{3}} \\ \end{matrix} \right|\\=\left| \begin{matrix} a & {{a}^{2}} & 1 \\ b & {{b}^{2}} & 1 \\ c & {{c}^{2}} & 1 \\ \end{matrix} \right|+\left| \begin{matrix} a & {{a}^{2}} & {{a}^{3}} \\ b & {{b}^{2}} & {{b}^{3}} \\ c & {{c}^{2}} & {{c}^{3}} \\ \end{matrix} \right|\\=\left| \begin{matrix} a & {{a}^{2}} & 1 \\ b & {{b}^{2}} & 1 \\ c & {{c}^{2}} & 1 \\ \end{matrix} \right|+abc\left| \begin{matrix} 1 & a & {{a}^{2}} \\ 1 & b & {{b}^{2}} \\ 1 & c & {{c}^{2}} \\ \end{matrix} \right|\end{array} \)

\(\begin{array}{l}={{\left( -1 \right)}^{1}}\left| \begin{matrix} 1 & {{a}^{2}} & a \\ 1 & {{b}^{2}} & b \\ 1 & {{c}^{2}} & c \\ \end{matrix} \right|+abc\left| \begin{matrix} 1 & a & {{a}^{2}} \\ 1 & b & {{b}^{2}} \\ 1 & c & {{c}^{2}} \\ \end{matrix} \right|\; \left[ {{C}_{1}}\leftrightarrow {{C}_{3}}\,in\,\,1st\,\,\det . \right]\end{array} \)

\(\begin{array}{l}={{\left( -1 \right)}^{2}}\left| \begin{matrix} 1 & a & {{a}^{2}} \\ 1 & b & {{b}^{2}} \\ 1 & c & {{c}^{2}} \\ \end{matrix} \right|+abc\left| \begin{matrix} 1 & a & {{a}^{2}} \\ 1 & b & {{b}^{2}} \\ 1 & c & {{c}^{2}} \\ \end{matrix} \right| \;\;\left[ {{C}_{2}}\leftrightarrow {{C}_{3}}\,in\,\,1st\,\,\det . \right]\end{array} \)

\(\begin{array}{l}=\left| \begin{matrix} 1 & a & {{a}^{2}} \\ 1 & b & {{b}^{2}} \\ 1 & c & {{c}^{2}} \\ \end{matrix} \right|+abc\left| \begin{matrix} 1 & a & {{a}^{2}} \\ 1 & b & {{b}^{2}} \\ 1 & c & {{c}^{2}} \\ \end{matrix} \right|\\=\left( 1+abc \right)\left| \begin{matrix} 1 & a & {{a}^{2}} \\ 1 & b & {{b}^{2}} \\ 1 & c & {{c}^{2}} \\ \end{matrix} \right|\end{array} \)

\(\begin{array}{l}=\left( 1+abc \right)\left| \begin{matrix} 1 & a & {{a}^{2}} \\ 0 & b-a & {{b}^{2}}-{{a}^{2}} \\ 0 & c-a & {{c}^{2}}-{{a}^{2}} \\ \end{matrix} \right| \;\;\left[ {{R}_{2}}\to {{R}_{2}}-{{R}_{1\,\,}}and\,\,{{R}_{3}}\to {{R}_{3}}-{{R}_{1}} \right]\end{array} \)

\(\begin{array}{l}=\left( 1+abc \right)\left| \begin{matrix} b-a & {{b}^{2}}-{{a}^{2}} \\ c-a & {{c}^{2}}-{{a}^{2}} \\ \end{matrix} \right| \;(expanding \;along \;1st \;row) \\=\left( 1+abc \right)\left( b-a \right)\left( c-a \right)\left| \begin{matrix} 1 & b+a \\ 1 & c+a \\ \end{matrix} \right|\end{array} \)

\(\begin{array}{l}=\left( 1+abc \right)\left( b-c \right)\left( c-a \right)\left( c+a-b-a \right)\\=\left( 1+abc \right)\left( b-a \right)\left( c-a \right)\left( c-b \right)\end{array} \)

\(\begin{array}{l}\Rightarrow D=\left( 1+abc \right)\left( a-b \right)\left( b-c \right)\left( c-a \right);\; But \;given \;D = 0\end{array} \)

\(\begin{array}{l}\Rightarrow \left( 1+abc \right)\left( a-b \right)\left( b-c \right)\left( c-a \right)=0 \end{array} \)

∴ ( 1 + abc) = 0

[since a, b, c are different

\(\begin{array}{l}a\ne b,b\ne c,c\ne a \end{array} \)

Hence, abc = -1

Question 5: Prove that

\(\begin{array}{l}\left| \begin{matrix} a+b+2c & a & b \\ c & b+c+2a & b \\ c & a & c+a+2b \\ \end{matrix} \right|=2{{\left( a+b+c \right)}^{3}}\end{array} \)

.

Solution:

Simply by using switching and scalar multiple properties, we can expand the L.H.S.

Given determinant

\(\begin{array}{l}=\left| \begin{matrix} a+b+2c & a & b \\ c & b+c+2a & b \\ c & a & c+a+2b \\ \end{matrix} \right|\end{array} \)

Applying

\(\begin{array}{l}{{C}_{1}}\to {{C}_{1}}+\left( {{C}_{2}}+{{C}_{3}} \right),\end{array} \)

, we obtain

\(\begin{array}{l}\left| \begin{matrix} 2\left( a+b+c \right) & a & b \\ 2\left( a+b+c \right) & b+c+2a & b \\ 2\left( a+b+c \right) & a & c+a+2b \\ \end{matrix} \right|\\=2\left( a+b+c \right)\left| \begin{matrix} 1 & a & b \\ 1 & b+c+2a & b \\ 1 & a & c+a+2b \\ \end{matrix} \right|\end{array} \)

\(\begin{array}{l}{R}_{1}\to {R}_{2}-{R}_{1}\;\;and\;\;{R}_{3}\to {R}_{3}-{R}_{1}\;\;(given)\end{array} \)

\(\begin{array}{l}2\left( a+b+c \right)\left| \begin{matrix} 1 & a & b \\ 0 & b+c+a & 0 \\ 0 & 0 & c+a+b \\ \end{matrix} \right|\\=2\left( a+b+c \right)\left\{ \left( b+c+a \right)\left( c+a+b \right)-\left( 0\times 0 \right) \right\}=2{{\left( a+b+c \right)}^{3}}\end{array} \)

Hence proved.

Question 6: Prove that

\(\begin{array}{l}\left| \begin{matrix} {{a}^{2}}+1 & ab & ac \\ ab & {{b}^{2}}+1 & bc \\ ac & bc & {{c}^{2}}+1 \\ \end{matrix} \right|=1+{{a}^{2}}+{{b}^{2}}+{{c}^{2}}\end{array} \)

.

Solution:

Expand the determinant

\(\begin{array}{l}\left| \begin{matrix} {{a}^{2}}+1 & ab & ac \\ ab & {{b}^{2}}+1 & bc \\ ac & bc & {{c}^{2}}+1 \\ \end{matrix} \right|\end{array} \)

by using scalar multiple and invariance properties.

L.H.S.=

\(\begin{array}{l}\left| \begin{matrix} {{a}^{2}}+1 & ab & ac \\ ab & {{b}^{2}}+1 & bc \\ ac & bc & {{c}^{2}}+1 \\ \end{matrix} \right|;\end{array} \)

Multiplying C1,C2,C3 by a, b, c, respectively

\(\begin{array}{l}=\frac{1}{abc}\left| \begin{matrix} a\left( {{a}^{2}}+1 \right) & a{{b}^{2}} & a{{c}^{2}} \\ {{a}^{2}}b & b\left( {{b}^{2}}+1 \right) & b{{c}^{2}} \\ {{a}^{2}}c & {{b}^{2}}c & c\left( {{c}^{2}}+1 \right) \\ \end{matrix} \right|;\end{array} \)

Now taking a, b, c common from R1,R2,R3, respectively.

\(\begin{array}{l}=\frac{abc}{abc}\left| \begin{matrix} {{a}^{2}}+1 & {{b}^{2}} & {{c}^{2}} \\ {{a}^{2}} & {{b}^{2}}+1 & {{c}^{2}} \\ {{a}^{2}} & {{b}^{2}} & {{c}^{2}}+1 \\ \end{matrix} \right|\\=\left| \begin{matrix} 1+{{a}^{2}}+{{b}^{2}}+{{c}^{2}} & {{b}^{2}} & {{c}^{2}} \\ 1+{{a}^{2}}+{{b}^{2}}+{{c}^{2}} & {{b}^{2}}+1 & {{c}^{2}} \\ 1+{{a}^{2}}+{{b}^{2}}+{{c}^{2}} & {{b}^{2}} & {{c}^{2}}+1 \\ \end{matrix} \right| \;\;\;\left[ {{C}_{1}}\to {{C}_{1}}+{{C}_{2}}+{{C}_{3}} \right]\end{array} \)

\(\begin{array}{l}=\left( 1+{{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\left| \begin{matrix} 1 & {{b}^{2}} & {{c}^{2}} \\ 1 & {{b}^{2}}+1 & {{c}^{2}} \\ 1 & {{b}^{2}} & {{c}^{2}}+1 \\ \end{matrix} \right|\\=\left( 1+{{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\left| \begin{matrix} 1 & {{b}^{2}} & {{c}^{2}} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{matrix} \right| \;\;\left[ {{R}_{2}}\to {{R}_{2}}-{{R}_{1}}\,and\,\,{{R}_{3}}\to {{R}_{3}}-{{R}_{1}} \right]\end{array} \)

\(\begin{array}{l}=\left( 1+{{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\left( 1 \right)=1+{{a}^{2}}+{{b}^{2}}+{{c}^{2}}=R.H.S.\end{array} \)

Hence proved.

Frequently Asked Questions

Q1

What do you mean by the reflection property of determinants?

The determinant remains unchanged if the rows are changed into columns and the columns into rows. This is known as the property of reflection.

Q2

What happens to a determinant if 2 rows or columns are interchanged?

The determinant changes its sign when 2 rows or columns are interchanged.

Q3

State the proportionality property of determinants.

If all the elements of a row or column are proportional or identical to the elements of another row or column, then the determinant is zero. This is also called the repetition property.

Q4

What do you mean by the triangle property of determinants?

If all the elements of a determinant above or below the main diagonal are zeros, then the determinant is equal to the product of diagonal elements.

Q5

Can a determinant be zero?

Yes, a determinant can be zero, negative or positive.

Q6

Is the determinant of an identity matrix equal to 1?

Yes, the determinant of an identity matrix is always 1.

Q7

What do you mean by all zero property of determinants?

According to all zero property of determinants, if all the elements of a row/column are zero, then the determinant is equal to zero.

Q8

If A-1 is the inverse of matrix A, then what is det A-1?

If  A-1 is the inverse of matrix A, then det A-1 = 1/det A.

Er. Neeraj K.Anand is a freelance mentor and writer who specializes in Engineering & Science subjects. Neeraj Anand received a B.Tech degree in Electronics and Communication Engineering from N.I.T Warangal & M.Tech Post Graduation from IETE, New Delhi. He has over 30 years of teaching experience and serves as the Head of Department of ANAND CLASSES. He concentrated all his energy and experiences in academics and subsequently grew up as one of the best mentors in the country for students aspiring for success in competitive examinations. In parallel, he started a Technical Publication "ANAND TECHNICAL PUBLISHERS" in 2002 and Educational Newspaper "NATIONAL EDUCATION NEWS" in 2014 at Jalandhar. Now he is a Director of leading publication "ANAND TECHNICAL PUBLISHERS", "ANAND CLASSES" and "NATIONAL EDUCATION NEWS". He has published more than hundred books in the field of Physics, Mathematics, Computers and Information Technology. Besides this he has written many books to help students prepare for IIT-JEE and AIPMT entrance exams. He is an executive member of the IEEE (Institute of Electrical & Electronics Engineers. USA) and honorary member of many Indian scientific societies such as Institution of Electronics & Telecommunication Engineers, Aeronautical Society of India, Bioinformatics Institute of India, Institution of Engineers. He has got award from American Biographical Institute Board of International Research in the year 2005.

CBSE Class 12 Maths Syllabus 2025-26 with Marks Distribution

The table below shows the marks weightage along with the number of periods required for teaching. The Maths theory paper is of 80 marks, and the internal assessment is of 20 marks which totally comes out to be 100 marks.

CBSE Class 12 Maths Syllabus And Marks Distribution 2023-24

Max Marks: 80

No.UnitsMarks
I.Relations and Functions08
II.Algebra10
III.Calculus35
IV.Vectors and Three – Dimensional Geometry14
V.Linear Programming05
VI.Probability08
Total Theory80
Internal Assessment20
Grand Total100

Unit-I: Relations and Functions

1. Relations and Functions

Types of relations: reflexive, symmetric, transitive and equivalence relations. One to one and onto functions.

2. Inverse Trigonometric Functions

Definition, range, domain, principal value branch. Graphs of inverse trigonometric functions.

Unit-II: Algebra

1. Matrices

Concept, notation, order, equality, types of matrices, zero and identity matrix, transpose of a matrix, symmetric and skew symmetric matrices. Operations on matrices: Addition and multiplication and multiplication with a scalar. Simple properties of addition, multiplication and scalar multiplication. Noncommutativity of multiplication of matrices and existence of non-zero matrices whose product is the zero matrix (restrict to square matrices of order 2). Invertible matrices and proof of the uniqueness of inverse, if it exists; (Here all matrices will have real entries).

2. Determinants

Determinant of a square matrix (up to 3 x 3 matrices), minors, co-factors and applications of determinants in finding the area of a triangle. Adjoint and inverse of a square matrix. Consistency, inconsistency and number of solutions of system of linear equations by examples, solving system of linear equations in two or three variables (having unique solution) using inverse of a matrix.

Unit-III: Calculus

1. Continuity and Differentiability

Continuity and differentiability, derivative of composite functions, chain rule, derivative of inverse trigonometric functions like sin-1 x, cos-1 x and tan-1 x, derivative of implicit functions. Concept of exponential and logarithmic functions.
Derivatives of logarithmic and exponential functions. Logarithmic differentiation, derivative of functions expressed in parametric forms. Second order derivatives.

2. Applications of Derivatives

Applications of derivatives: rate of change of quantities, increasing/decreasing functions, maxima and minima (first derivative test motivated geometrically and second derivative test given as a provable tool). Simple problems (that illustrate basic principles and understanding of the subject as well as real-life situations).

3. Integrals 

Integration as inverse process of differentiation. Integration of a variety of functions by substitution, by partial fractions and by parts, Evaluation of simple integrals of the following types and problems based on them.

Fundamental Theorem of Calculus (without proof). Basic properties of definite integrals and evaluation of definite integrals.

4. Applications of the Integrals

Applications in finding the area under simple curves, especially lines, circles/ parabolas/ellipses (in standard form only)

5. Differential Equations

Definition, order and degree, general and particular solutions of a differential equation. Solution of differential equations by method of separation of variables, solutions of homogeneous differential equations of first order and first degree. Solutions of linear differential equation of the type:

dy/dx + py = q, where p and q are functions of x or constants.

dx/dy + px = q, where p and q are functions of y or constants.

Unit-IV: Vectors and Three-Dimensional Geometry

1. Vectors

Vectors and scalars, magnitude and direction of a vector. Direction cosines and direction ratios of a vector. Types of vectors (equal, unit, zero, parallel and collinear vectors), position vector of a point, negative of a vector, components of a vector, addition of vectors, multiplication of a vector by a scalar, position vector of a point dividing a line segment in a given ratio. Definition, Geometrical Interpretation, properties and application of scalar (dot) product of vectors, vector (cross) product of vectors.

2. Three – dimensional Geometry

Direction cosines and direction ratios of a line joining two points. Cartesian equation and vector equation of a line, skew lines, shortest distance between two lines. Angle between two lines.

Unit-V: Linear Programming

1. Linear Programming

Introduction, related terminology such as constraints, objective function, optimization, graphical method of solution for problems in two variables, feasible and infeasible regions (bounded or unbounded), feasible and infeasible solutions, optimal feasible solutions (up to three non-trivial constraints).

Unit-VI: Probability

1. Probability

Conditional probability, multiplication theorem on probability, independent events, total probability, Bayes’ theorem, Random variable and its probability distribution, mean of random variable.

Students can go through the CBSE Class 12 Syllabus to get the detailed syllabus of all subjects. Get access to interactive lessons and videos related to Maths and Science with ANAND CLASSES’S App/ Tablet.

Frequently Asked Questions on CBSE Class 12 Maths Syllabus 2025-26

Q1

Is Calculus an important chapter in the CBSE Class 12 Maths Syllabus?

Yes, Calculus is an important chapter in the CBSE Class 12 Maths Syllabus. It is for 35 marks which means that if a student is thorough with this chapter will be able to pass the final exam.

Q2

How many units are discussed in the CBSE Class 12 Maths Syllabus?

In the CBSE Class 12 Maths Syllabus, about 6 units are discussed, which contains a total of 13 chapters.

Q3

How many marks are allotted for internals in the CBSE Class 12 Maths syllabus?

About 20 marks are allotted for internals in the CBSE Class 12 Maths Syllabus. Students can score it with ease through constant practice.