Complex Numbers JEE Previous Year Questions (PYQs) With Solution pdf free download

JEE Main Maths Complex Numbers & Quadratic Equations Previous Year Questions With Solutions

Question 1: If (1 + i) (1 + 2i) (1 + 3i) ….. (1 + ni) = a + ib, then what is 2 * 5 * 10….(1 + n2) is equal to?

Solution:

We have (1 + i) (1 + 2i) (1 + 3i) ….. (1 + ni) = a + ib …..(i)

(1 − i) (1 − 2i) (1 − 3i) ….. (1 − ni) = a − ib …..(ii)

Multiplying (i) and (ii),

we get 2 * 5 * 10 ….. (1 + n2) = a2 + b2

Question 2: If z is a complex number, then the minimum value of |z| + |z − 1| is ______.

Solution:

First, note that |−z|=|z| and |z1 + z2| ≤ |z1| + |z2|

Now |z| + |z − 1| = |z| + |1 − z| ≥ |z + (1 − z)|

= |1|

= 1

Hence, minimum value of |z| + |z − 1| is 1.

Question 3: For any two complex numbers z1 and z2 and any real numbers a and b; |(az1 − bz2)|2 + |(bz1 + az2)|2 = ___________.

Solution:

|(az1 − bz2)|2 + |(bz1 + az2)|2

\(\begin{array}{l}= (az_{1}-bz_{2})(a\overline{z_{1}}-b\overline{z_{2}})+(bz_{1}+az_{2})(b\overline{z_{1}}+a\overline{z_{2}})\end{array} \)

= (a2 + b2) (|z1|2 + |z2|2)

Question 4: Find the complex number z satisfying the equations

\(\begin{array}{l}|\frac{z-12}{z-8i}| = \frac{5}{3},\ |\frac{z-4}{z-8}| = 1.\end{array} \)

Solution:

We have

\(\begin{array}{l}|\frac{z-12}{z-8i}| = \frac{5}{3}\end{array} \)

,

\(\begin{array}{l}|\frac{z-4}{z-8}| = 1\end{array} \)

Let z = x + iy, then

\(\begin{array}{l}|\frac{z-12}{z-8i}| = \frac{5}{3}\end{array} \)

⇒ 3|z − 12| = 5 |z − 8i|

3 |(x − 12) + iy| = 5 |x + (y − 8) i|

9 (x − 12)2 + 9y2 = 25x2 + 25 (y − 8)2 ….(i) and

\(\begin{array}{l}|\frac{z-4}{z-8}| = 1\end{array} \)

⇒ |z − 4| = |z − 8|

|x − 4 + iy| = |x − 8 + iy|

(x − 4)2 + y2 = (x − 8)2 + y2

⇒ x = 6

Putting x = 6 in (i), we get y2 − 25y + 136 = 0

y = 17, 8

Hence, z = 6 + 17i or z = 6 + 8i

Question 5: If z1 = 10 + 6i, z2 = 4 + 6i and z is a complex number such that

\(\begin{array}{l}amp\ \frac{z-z_1}{z−z_2} = \frac{\pi}{4}\end{array} \)

, then the value of |z − 7 − 9i| is equal to _________.

Solution:

Given numbers are z1 = 10 + 6i, z2 = 4 + 6i and z = x + iy

\(\begin{array}{l}amp\ \frac{z-z_1}{z−z_2} = \frac{\pi}{4}\end{array} \)

amp [(x − 10) + i (y − 6) (x − 4) + i (y − 6)] = π / 4

\(\begin{array}{l}\frac{(x − 4) (y − 6) − (y − 6) (x − 10)}{(x − 4) (x − 10) + (y − 6)^2}= 1\end{array} \)

12y − y2 − 72 + 6y = x2 − 14x + 40 …..(i)

Now |z − 7 −9i| = |(x − 7) + i (y − 9)|

From (i), (x2 − 14x + 49) + (y2 − 18y + 81) = 18

(x − 7)2 + (y − 9)2 = 18 or

[(x − 7)2 + (y − 9)2]½ = [18]½ = 3√2

|(x − 7) + i (y − 9)| = 3√2 or

|z − 7 −9i| = 3√2.

Question 6: Suppose z1, z2, z3 are the vertices of an equilateral triangle inscribed in the circle |z| = 2. If z1 = 1 + i√3, then find the values of z3 and z2.

Solution:

One of the numbers must be a conjugate of z1 = 1 + i√3 i.e. z2 = 1 − i√3 or z3 = z1 ei2π/3 and

z2 = z1 e−i2π/3 , z3 = (1 + i√3) [cos (2π / 3) + i sin (2π / 3)] = −2

Question 7: If cosα + cos β + cos γ = sin α + sin β + sin γ = 0 then what is the value of cos 3α + cos 3β + cos 3γ?

Solution:

cos α + cos β + cos γ = 0 and sin α + sin β + sin γ = 0

Let a = cos α + i sin α; b = cos β + i sin β and c = cos γ + i sin γ.

Therefore, a + b + c = (cosα + cosβ + cosγ) + i (sinα + sinβ + sinγ) = 0 + i0 = 0

If a + b + c = 0, then a3 + b3 + c3 = 3abc or

(cosα + isina)3 + (cosβ + isinβ)3 + (cosγ + isinγ)3

= 3 (cosα + isinα) (cosβ + isinβ) (cosγ + isinγ)

⇒ (cos3α + isin3α) + (cos3β + isin3β) + (cos3γ + isin3γ)

= 3 [cos (α + β + γ) + i sin (α + β + γ)] or cos 3α + cos 3β + cos 3γ

= 3 cos (α + β + γ).

Question 8: If the cube roots of unity are 1, ω, ω2, then find the roots of the equation (x − 1)3 + 8 = 0.

Solution:

(x − 1)3 = −8 ⇒ x − 1 = (−8)1/3

x − 1 = −2, −2ω, −2ω2

x = −1, 1 − 2ω, 1 − 2ω2

Question 9: If 1, ω, ω2, ω3……., ωn−1 are the n, nth roots of unity, then (1 − ω) (1 − ω2) …..

(1 − ωn − 1) = ____________.

Solution:

Since 1, ω, ω2, ω3……., ωn−1 are the n, nth roots of unity, therefore, we have the identity

= (x − 1) (x − ω) (x − ω2) ….. (x − ωn−1) = xn − 1 or

(x − ω) (x − ω2)…..(x − ωn−1) = xn−1 / x−1

= xn−1 + xn−2 +….. + x + 1

Putting x = 1 on both sides, we get

(1 − ω) (1 − ω2)….. (1 − ωn−1) = n

Question 10: If a = cos (2π / 7) + i sin (2π / 7), then the quadratic equation whose roots are α = a + a2 + a4 and β = a3 + a5 + a6 is _____________.

Solution:

a = cos (2π / 7) + i sin (2π / 7)

a7 = [cos (2π / 7) + i sin (2π / 7)]7

= cos 2π + i sin 2π = 1 …..(i)

S = α + β = (a + a2 + a4) + (a3 + a5 + a6)

S = a + a2 + a3 + a4 + a5 + a6

\(\begin{array}{l}= \frac{a(1-a^6)}{1-a}\end{array} \)

or

\(\begin{array}{l}S = \frac{a-1}{1-a}= −1 …..(ii)\end{array} \)

P = α * β = (a + a2 + a4) (a3 + a5 + a6)

= a4 + a6 + a7 + a5 + a7 + a8 + a7 + a9 + a10

= a4 + a6 + 1 + a5 + 1 + a + 1 + a2 + a3 (From eqn (i)]

= 3+(a + a2 + a3 + a4 + a5 + a6)

= 3 + S = 3 − 1 = 2 [From (ii)]

Required equation is, x2 − Sx + P = 0

x2 + x + 2 = 0.

Question 11: Let z1 and z2 be nth roots of unity, which are ends of a line segment that subtend a right angle at the origin. Then n must be of the form ____________.

Solution:

11/n = cos [2rπ / n] + i sin [2r π / n]

Let z1 = [cos 2r1π / n] + i sin [2r1π / n] and z2 = [cos 2r2π / n] + i sin [2r2π / n].

Then ∠Z1 O Z2 = amp (z1 / z2) = amp (z1) − amp (z2)

= [2 (r1 − r2)π] / [n]

= π / 2

(Given) n = 4 (r1 − r2)

= 4 × integer, so n is of the form 4k.

Question 12: (cos θ + i sin θ)4 / (sin θ + i cos θ)5 is equal to ____________.

Solution:

(cos θ + i sin θ)4 / (sin θ + i cos θ)5

= (cos θ + i sin θ)4 / i5 ([1 / i] sin θ + cos θ)5

= (cosθ + i sin θ)4 / i (cos θ − i sin θ)5

= (cos θ + i sin θ)4 / i (cos θ + i sin θ)−5 (By property) = 1 / i (cos θ + i sin θ)9

= sin(9θ) − i cos (9θ).

Question 13: Given z = (1 + i√3)100, then find the value of Re (z) / Im (z).

Solution:

Let z = (1 + i√3)

r = √[3 + 1] = 2 and r cosθ = 1, r sinθ = √3, tanθ = √3 = tan π / 3 ⇒ θ = π / 3.

z = 2 (cos π / 3 + i sin π / 3)

z100 = [2 (cos π / 3 + i sin π / 3)]100

= 2100 (cos 100π / 3 + i sin 100π / 3)

= 2100 (−cos π / 3 − i sin π / 3)

= 2100(−1 / 2 −i √3 / 2)

Re(z) / Im(z) = [−1/2] / [−√3 / 2] = 1 / √3.

Question 14: If x = a + b, y = aα + bβ and z = aβ + bα, where α and β are complex cube roots of unity, then what is the value of xyz?

Solution:

If x = a + b, y = aα + bβ and z = aβ + bα, then xyz = (a + b) (aω + bω2) (aω2 + bω),where α = ω and β = ω2 = (a + b) (a2 + abω2 + abω + b2)

= (a + b) (a2− ab + b2)

= a3 + b3

Question 15: If ω is an imaginary cube root of unity, (1 + ω − ω2)7 equals to ___________.

Solution:

(1 + ω − ω2)7 = (1 + ω + ω2 − 2ω2)7

= (−2ω2)7

= −128ω14

= −128ω12ω2

= −128ω2

Question 16: If α, β, γ are the cube roots of p (p < 0), then for any x, y and z, find the value of [xα + yβ + zγ] / [xβ + yγ + zα].

Solution:

Since p < 0.

Let p = −q, where q is positive.

Therefore, p1/3 = −q1/3(1)1/3.

Hence α = −q1/3, β = −q1/3 ω and γ = −q1/3ω2

The given expression [x + yω + zω2] / [xω + yω2 + z] = (1 / ω) * [xω + yω2 + z] / [xω + yω2 + z]

= ω2.

Question 17: The common roots of the equations x12 − 1 = 0, x4 + x2 + 1 = 0 are __________.

Solution:

x12 − 1 = (x6 + 1) (x6 − 1)

= (x6 + 1) (x2 − 1) (x4 + x2 + 1)

Common roots are given by x4 + x2 + 1 =0

x2 = [−1 ± i √3] / [2] = ω, ω2 or ω4, ω2 (Because ω3 = 1) or

x = ± ω2, ± ω

Question 18: Given that the equation z2 + (p + iq)z + r + is = 0, where p, q, r, s are real and non-zero has a real root, then how are p, q, r and s related?

Solution:

Given that z2 + (p + iq)z + r + is = 0 ……(i)

Let z = α (where α is real) be a root of (i), then

α2 + (p + iq)α + r + is = 0 or

α2 + pα + r + i (qα + s) = 0

Equating real and imaginary parts, we have α2 + pα + r = 0 and qα + s = 0

Eliminating α, we get

(−s / q)2 + p (−s / q) + r = 0 or

s2 − pqs + q2r = 0 or

pqs = s2 + q2r

Question 19: The difference between the corresponding roots of x2 + ax + b = 0 and x2 + bx + a = 0 is same and a≠b, then what is the relation between a and b?

Solution:

Let α, β and γ,δ be the roots of the equations x2 + ax + b = 0 and x2 + bx + a = 0, respectively therefore, α + β = −a, αβ = b and δ + γ = −b, γδ = a.

Given |α − β| =|γ − δ| ⇒ (α + β)2 − 4αβ

= (γ + δ)2 −4γδ

⇒ a2 − 4b = b2 − 4a

⇒ (a2 − b2) + 4 (a − b) = 0

⇒ a + b + 4 = 0 (Because a≠b)

Question 20: If b1 b2 = 2 (c1 + c2), then at least one of the equations x2 + b1x + c1 = 0 and x2 + b2x + c2 = 0 has ____________ roots.

Solution:

Let D1 and D2 be discriminants of x2 + b1x + c1 = 0 and x2 + b2x + c2 = 0, respectively.

Then,

D1 + D2 = b12 − 4c1 + b22 − 4c2

= (b12 + b22) − 4 (c1 + c2)

= b12 + b22 − 2b1b2 [Because b1b2 = 2 (c1 + c2)] = (b1 – b2)2 ≥ 0

⇒ D1 ≥ 0 or D2 ≥ 0 or D1 and D2 both are positive.

Hence, at least one of the equations has real roots.

Question 21: If the roots of the equation x2 + 2ax + b = 0 are real and distinct and they differ by at most 2m then b lies in what interval?

Solution:

Let the roots be α, β

α + β = −2a and αβ = b

Given, |α − β| ≤ 2m

or |α − β|2 ≤ (2m)2 or

(α + β)2− 4αβ ≤ 4m2 or

4a2 − 4b ≤ 4m2

⇒ a2 − m2 ≤ b and discriminant D > 0 or

4a2 − 4b > 0

⇒ a2 − m2 ≤ b and b < a2.

Hence, b ∈ [a2 − m2 , a2).

Question 22: If ([1 + i] / [1 − i])m = 1, then what is the least integral value of m?

Solution:

[1 + i] / [1 − i] = ([1 + i] / [1 − i]) × [1 + i] / [1 + i]

= [(1 + i)2] / [2]

= 2i / 2

= i

([1 + i] / [1 − i])m = 1 (as given)

So, the least value of m = 4 {Because i4 = 1}

Question 23: If (1 − i) x + (1 + i) y = 1 − 3i, then (x, y) = ______________.

Solution:

(1 − i) x + (1 + i) y = 1 − 3i

⇒ (x + y) + i (−x + y) = 1 − 3i

Equating real and imaginary parts, we get x + y = 1 and −x + y = −3;

So, x = 2, y = −1.

Thus, the point is (2, −1).

Question 24: [3 + 2i sinθ] / [1 − 2i sinθ] will be purely imaginary if θ = ___________.

Solution:

[3 + 2i sinθ] / [1 − 2i sinθ] will be purely imaginary, if the real part vanishes, i.e.,
[3 − 4 sin2 θ] / [1 + 4 sin2θ] = 0

3 − 4 sin2 θ (only if θ be real)

sinθ = ±√3 / 2

= sin(± π / 3)

θ = nπ + (−1)n (± π / 3)

= nπ ± π / 3

Question 25: The real values of x and y for which the equation is (x + iy) (2 − 3i) = 4 + i is satisfied, are __________.

Solution:

Equation (x + iy) (2 − 3i) = 4 + i

(2x + 3y) + i (−3x + 2y) = 4 + i

Equating real and imaginary parts, we get

2x + 3y = 4 ……(i)

−3x + 2y = 1 ……(ii)

From (i) and (ii), we get

x = 5 / 13, y = 14 / 13

Er. Neeraj K.Anand is a freelance mentor and writer who specializes in Engineering & Science subjects. Neeraj Anand received a B.Tech degree in Electronics and Communication Engineering from N.I.T Warangal & M.Tech Post Graduation from IETE, New Delhi. He has over 30 years of teaching experience and serves as the Head of Department of ANAND CLASSES. He concentrated all his energy and experiences in academics and subsequently grew up as one of the best mentors in the country for students aspiring for success in competitive examinations. In parallel, he started a Technical Publication "ANAND TECHNICAL PUBLISHERS" in 2002 and Educational Newspaper "NATIONAL EDUCATION NEWS" in 2014 at Jalandhar. Now he is a Director of leading publication "ANAND TECHNICAL PUBLISHERS", "ANAND CLASSES" and "NATIONAL EDUCATION NEWS". He has published more than hundred books in the field of Physics, Mathematics, Computers and Information Technology. Besides this he has written many books to help students prepare for IIT-JEE and AIPMT entrance exams. He is an executive member of the IEEE (Institute of Electrical & Electronics Engineers. USA) and honorary member of many Indian scientific societies such as Institution of Electronics & Telecommunication Engineers, Aeronautical Society of India, Bioinformatics Institute of India, Institution of Engineers. He has got award from American Biographical Institute Board of International Research in the year 2005.

CBSE Class 11 Maths Syllabus for 2023-24 with Marking Scheme

CBSE syllabus for class 11 Maths is divided into 5 units. The table below shows the units, number of periods and marks allocated for maths subject. The maths theory paper is of 80 marks and the internal assessment is of 20 marks.

No.UnitsMarks
I.Sets and Functions23
II.Algebra25
III.Coordinate Geometry12
IV.Calculus08
V.Statistics and Probability12
Total Theory80
Internal Assessment20
Grand Total100

2025-26 CBSE Class 11 Maths Syllabus

Below you will find the CBSE Class Maths Syllabus for students.

Unit-I: Sets and Functions

1. Sets

Sets and their representations, empty sets, finite and infinite sets, equal sets, subsets, and subsets of a set of real numbers, especially intervals (with notations), universal set, Venn diagrams, union and intersection of sets, difference of sets, complement of a set and properties of complement.

2. Relations & Functions

Ordered pairs, Cartesian product of sets, number of elements in the Cartesian product of two finite sets, Cartesian product of the set of reals with itself (upto R x R x R), definition of relation, pictorial diagrams, domain, co-domain and range of a relation. Function as a special type of relation. Pictorial representation of a function, domain, co-domain and range of a function. Real valued functions, domain and range of these functions, constant, identity, polynomial, rational, modulus, signum, exponential, logarithmic and greatest integer functions, with their graphs. Sum, difference, product and quotients of functions.

3. Trigonometric Functions

Positive and negative angles, measuring angles in radians and in degrees and conversion from one measure to another, definition of trigonometric functions with the help of unit circle, truth of the identity, signs of trigonometric functions, domain and range of trigonometric functions and their graphs, expressing sin (x±y) and cos (x±y) in terms of sinx, siny, cosx & cosy and their simple applications.

Unit-II: Algebra

1. Complex Numbers and Quadratic Equations

Need for complex numbers, especially√−1, to be motivated by the inability to solve some of the quadratic equations. Algebraic properties of complex numbers, Argand plane.

2. Linear Inequalities

Linear inequalities, algebraic solutions of linear inequalities in one variable and their representation on the number line.

3. Permutations and Combinations

The fundamental principle of counting. Factorial n. (n!) Permutations and combinations, derivation of Formulae for nPr and nCr and their connections, simple applications.

4. Binomial Theorem

Historical perspective, statement and proof of the binomial theorem for positive integral indices, Pascal’s triangle, simple applications.

5. Sequence and Series

Sequence and series, arithmetic progression (A. P.), arithmetic mean (A.M.),  geometric progression (G.P.), general term of a G.P., sum of n terms of a G.P., infinite G.P. and its sum, geometric mean (G.M.), relation between A.M. and G.M.

Unit-III: Coordinate Geometry

1. Straight Lines

Brief recall of two-dimensional geometry from earlier classes. Slope of a line and angle between two lines. Various forms of equations of a line: parallel to axis, point-slope form, slope-intercept form, two-point form, intercept form and normal form. General equation of a line. Distance of a point from a line.

2. Conic Sections

Sections of a cone: circles, ellipse, parabola, hyperbola, a point, a straight line and a pair of intersecting lines as a degenerated case of a conic section. Standard equations and simple properties of parabola, ellipse and hyperbola. Standard equation of a circle.

3. Introduction to Three-Dimensional Geometry

Coordinate axes and coordinate planes in three dimensions. Coordinates of a point. Distance between two points.

Unit-IV: Calculus

1. Limits and Derivatives

Derivative introduced as rate of change both as that of distance function and geometrically, intuitive idea of limit, limits of polynomials and rational functions trigonometric, exponential and logarithmic functions, definition of derivative relate it to the slope of the tangent of the curve, derivative of sum, difference, product and quotient of functions. Derivatives of polynomial and trigonometric functions.

Unit-V: Statistics and Probability

1. Statistics

Measures of Dispersion: Range, mean deviation, variance and standard deviation of ungrouped/grouped data.

2. Probability

Events; occurrence of events, ‘not’, ‘and’ and ‘or’ events, exhaustive events, mutually exclusive events, Axiomatic (set theoretic) probability, connections with other theories of earlier classes. Probability of an event, probability of ‘not’, ‘and’ and ‘or’ events.

Students can also get the syllabus of all the subjects by visiting CBSE Class 11 Syllabus page. Learn Maths & Science in an interactive & fun-loving way with Anand Classes App/Tablet.

Frequently Asked Questions on CBSE Class 11 Maths Syllabus 2025-26

Q1

What is the marks distribution for internals and theory exams according to the CBSE Maths Syllabus for Class 11?

The marks distribution for internals is 20 marks and the theory exam is 80 marks based on the CBSE Class 11 Maths Syllabus.

Q2

Which is the most important chapter in the CBSE Class 11 Maths Syllabus?

The important chapter in the CBSE Class 11 Maths Syllabus is Algebra which is for 25 marks in the overall weightage.

Q3

What are the chapters covered in Unit III of the CBSE Class 11 Maths Syllabus?

The chapters covered in Unit III of the CBSE Class 11 Maths Syllabus are straight lines, conic sections and an introduction to three-dimensional geometry.