Adjoint and Inverse of a Matrix With Their Relation, Properties, Solved Examples Problems, Class 12 Math Determinants Notes Study Material free pdf download

Adjoint of a Matrix

Let the determinant of a square matrix A be |A|.

\(\begin{array}{l}If A=\left[ \begin{matrix} {{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\ {{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\ {{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\ \end{matrix} \right],\;\; then \;\;\left| A \right|=\left| \begin{matrix} {{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\ {{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\ {{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\ \end{matrix} \right|\end{array} \)

The matrix formed by the cofactors of the elements is

\(\begin{array}{l}\left[ \begin{matrix} {{A}_{11}} & {{A}_{12}} & {{A}_{13}} \\ {{A}_{21}} & {{A}_{22}} & {{A}_{23}} \\ {{A}_{31}} & {{A}_{32}} & {{A}_{33}} \\ \end{matrix} \right]\end{array} \)

Where

\(\begin{array}{l}{{A}_{11}}={{\left( -1 \right)}^{1+1}}\left| \begin{matrix} {{a}_{22}} & {{a}_{23}} \\ {{a}_{32}} & {{a}_{33}} \\ \end{matrix} \right|={{a}_{22}}{{a}_{33}}-{{a}_{23}}.\,{{a}_{32}}\end{array} \)

\(\begin{array}{l}{{A}_{12}}={{\left( -1 \right)}^{1+2}}\left| \begin{matrix} {{a}_{21}} & {{a}_{23}} \\ {{a}_{31}} & {{a}_{33}} \\ \end{matrix} \right|=-{{a}_{21}}.\,{{a}_{33}}+{{a}_{23}}.\,{{a}_{31}};{{A}_{13}}={{\left( -1 \right)}^{1+3}}\left| \begin{matrix} {{a}_{21}} & {{a}_{22}} \\ {{a}_{31}} & {{a}_{32}} \\ \end{matrix} \right|={{a}_{21}}{{a}_{32}}-{{a}_{22}}{{a}_{31}};\end{array} \)

\(\begin{array}{l}{{A}_{21}}={{\left( -1 \right)}^{2+1}}\left| \begin{matrix} {{a}_{12}} & {{a}_{13}} \\ {{a}_{32}} & {{a}_{33}} \\ \end{matrix} \right|=-{{a}_{12}}{{a}_{33}}+{{a}_{13}}.\,{{a}_{32}};{{A}_{22}}={{\left( -1 \right)}^{2+2}}\left| \begin{matrix} {{a}_{11}} & {{a}_{13}} \\ {{a}_{31}} & {{a}_{33}} \\ \end{matrix} \right|={{a}_{11}}{{a}_{33}}-{{a}_{13}}.\,{{a}_{31}};\end{array} \)

\(\begin{array}{l}{{A}_{23}}={{\left( -1 \right)}^{2+3}}\left| \begin{matrix} {{a}_{11}} & {{a}_{12}} \\ {{a}_{31}} & {{a}_{32}} \\ \end{matrix} \right|=-{{a}_{11}}{{a}_{32}}+{{a}_{12}}.\,{{a}_{31}};{{A}_{31}}={{\left( -1 \right)}^{3+1}}\left| \begin{matrix} {{a}_{12}} & {{a}_{13}} \\ {{a}_{22}} & {{a}_{23}} \\ \end{matrix} \right|={{a}_{12}}{{a}_{23}}-{{a}_{13}}.\,{{a}_{22}};\end{array} \)

\(\begin{array}{l}{{A}_{32}}={{\left( -1 \right)}^{3+2}}\left| \begin{matrix} {{a}_{11}} & {{a}_{13}} \\ {{a}_{21}} & {{a}_{23}} \\ \end{matrix} \right|=-{{a}_{11}}{{a}_{23}}+{{a}_{13}}.\,{{a}_{21}};{{A}_{33}}={{\left( -1 \right)}^{3+3}}\left| \begin{matrix} {{a}_{11}} & {{a}_{12}} \\ {{a}_{21}} & {{a}_{22}} \\ \end{matrix} \right|={{a}_{11}}{{a}_{22}}-{{a}_{12}}.\,{{a}_{21}};\end{array} \)

Then, the transpose of the matrix of co-factors is called the adjoint of matrix A and is written as adj A.

\(\begin{array}{l}adj\,A=\left[ \begin{matrix} {{A}_{11}} & {{A}_{21}} & {{A}_{31}} \\ {{A}_{12}} & {{A}_{22}} & {{A}_{32}} \\ {{A}_{13}} & {{A}_{23}} & {{A}_{33}} \\ \end{matrix} \right]\end{array} \)

The product of a matrix A and its adjoint is equal to the unit matrix multiplied by the determinant A.

Let A be a square matrix, then (Adjoint A). A = A. (Adjoint A) = | A |. I

Let

\(\begin{array}{l}A=\left[ \begin{matrix} {{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\ {{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\ {{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\ \end{matrix} \right] \;\;and \;\;adj \;A\;=\;\left[ \begin{matrix} {{A}_{11}} & {{A}_{21}} & {{A}_{31}} \\ {{A}_{12}} & {{A}_{22}} & {{A}_{32}} \\ {{A}_{13}} & {{A}_{23}} & {{A}_{33}} \\ \end{matrix} \right]\end{array} \)

A. (adj. A)

\(\begin{array}{l}=\left[ \begin{matrix} {{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\ {{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\ {{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\ \end{matrix} \right]\times \left[ \begin{matrix} {{A}_{11}} & {{A}_{21}} & {{A}_{31}} \\ {{A}_{12}} & {{A}_{22}} & {{A}_{32}} \\ {{A}_{13}} & {{A}_{23}} & {{A}_{33}} \\ \end{matrix} \right]\end{array} \)

\(\begin{array}{l}=\left[ \begin{matrix} {{a}_{11}}{{A}_{11}}+{{a}_{12}}{{A}_{12}}+{{a}_{13}}{{A}_{13}} & {{a}_{11}}{{A}_{21}}+{{a}_{12}}{{A}_{22}}+{{a}_{13}}{{A}_{23}} & {{a}_{11}}{{A}_{31}}+{{a}_{12}}{{A}_{32}}+{{a}_{13}}{{A}_{33}} \\ {{a}_{21}}{{A}_{11}}+{{a}_{22}}{{A}_{12}}+{{a}_{23}}{{A}_{13}} & {{a}_{21}}{{A}_{21}}+{{a}_{22}}{{A}_{22}}+{{a}_{23}}{{A}_{23}} & {{a}_{21}}{{A}_{31}}+{{a}_{22}}{{A}_{32}}+{{a}_{23}}{{A}_{33}} \\ {{a}_{31}}{{A}_{11}}+{{a}_{32}}{{A}_{12}}+{{a}_{33}}{{A}_{13}} & {{a}_{31}}{{A}_{21}}+{{a}_{32}}{{A}_{22}}+{{a}_{33}}{{A}_{23}} & {{a}_{31}}{{A}_{31}}+{{a}_{32}}{{A}_{32}}+{{a}_{33}}{{A}_{33}} \\ \end{matrix} \right]\end{array} \)

\(\begin{array}{l}=\left[ \begin{matrix} \left| A \right| & 0 & 0 \\ 0 & \left| A \right| & 0 \\ 0 & 0 & \left| A \right| \\ \end{matrix} \right]=\left| A \right|\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{matrix} \right]=\left| A \right|I.\end{array} \)

Solved Example Problems on How to Find the Adjoint of a Matrix

Example 1: If AT = – A, then the elements on the diagonal of the matrix are equal to

(a) 1

(b) -1

(c) 0

(d) None of these

Solution:

AT = -A; A is a skew-symmetric matrix; diagonal elements of A are zeros.

So, option (c) is the answer.

Example 2: If A and B are two skew-symmetric matrices of order n, then,

(a) AB is a skew-symmetric matrix

(b) AB is a symmetric matrix

(c) AB is a symmetric matrix if A and B commute

(d) None of these

Solution:

We are given A’ = -A and B’ = -B;

Now, (AB)’ = B’A’ = (-B) (-A) = BA = AB, if A and B commute.

Thus, the correct option is (c).

Example 3: Let A and B be two matrices such that AB’ + BA’ = 0. If A is skew-symmetric, then BA is

(a) Symmetric

(b) Skew symmetric

(c) Invertible

(d) None of these

Solution:

(c) We have, (BA)’ = A’B’ = -AB’ [A is skew symmetric]; = BA’ = B(-A)

= -BA

BA is skew symmetric.

Thus, the correct option is (b).

Example 4: Let 

\(\begin{array}{l}A=\left[ \begin{matrix} 1 & 2 & 3 \\ 1 & 3 & 4 \\ 1 & 4 & 3 \\ \end{matrix} \right],\end{array} \)

then find adj A.

Solution:

Co-factors of the elements of any matrix are obtained by eliminating all the elements of the same row and column and calculating the determinant of the remaining elements.

\(\begin{array}{l}{{A}_{11}}=\left| \begin{matrix} 3 & 4 \\ 4 & 3 \\ \end{matrix} \right|=3\times 3-4\times 4=-7\end{array} \)

\(\begin{array}{l}{{A}_{12}}=-\left| \begin{matrix} 1 & 4 \\ 1 & 3 \\ \end{matrix} \right|=1,{{A}_{13}}=\left| \begin{matrix} 1 & 3 \\ 1 & 4 \\ \end{matrix} \right|=1; {{A}_{21}}=-\left| \begin{matrix} 2 & 3 \\ 4 & 3 \\ \end{matrix} \right|=6,{{A}_{22}}=\left| \begin{matrix} 1 & 3 \\ 1 & 3 \\ \end{matrix} \right|=0\end{array} \)

\(\begin{array}{l}{{A}_{23}}=-\left| \begin{matrix} 1 & 2 \\ 1 & 4 \\ \end{matrix} \right|=-2,\,\,\,\,{{A}_{31}}=\left| \begin{matrix} 2 & 3 \\ 3 & 4 \\ \end{matrix} \right|=-1;\,\,\,\,{{A}_{32}}=-\left| \begin{matrix} 1 & 3 \\ 1 & 4 \\ \end{matrix} \right|=-1, \;\;\;{{A}_{33}}=\left| \begin{matrix} 1 & 2 \\ 1 & 3 \\ \end{matrix} \right|=1\end{array} \)

adj A = transpose of cofactor matrix.

\(\begin{array}{l}\therefore Adj\,\,A=\left| \begin{matrix} -7 & 6 & -1 \\ 1 & 0 & -1 \\ 1 & -2 & 1 \\ \end{matrix} \right|\end{array} \)

Example 5: Which of the following statements is false?

(a) If | A | = 0, then | adj A | = 0

(b) Adjoint of a diagonal matrix of order 3 × 3 is a diagonal matrix

(c) Product of two upper triangular matrices is an upper triangular matrix

(d) adj (AB) = adj (A) adj (B)

Solution:

We have adj (AB) = adj (B) adj (A) and not adj (AB) = adj (A) adj (B).

Thus, the correct option is (d).

Inverse of a Matrix

If A and B are two square matrices of the same order, such that AB = BA = I (I = unit matrix), then B is called the inverse of A, i.e., B = A–1, and A is the inverse of B. Condition for a square matrix A to possess an inverse is that the matrix A is non-singular, i.e., | A | ≠ 0. If A is a square matrix and B is its inverse, then AB = I. Taking the determinant of both sides | AB | = | I | or | A | | B | = I. From this relation, it is clear that | A | ≠ 0, i.e. the matrix A is non-singular.

How to find the inverse of a matrix by using the adjoint matrix?

We know that,

\(\begin{array}{l}A.\left( Adj\,A \right)=\left| A \right|I\;\; or \;\;\;\frac{A.\left( Adj\,A \right)}{\left| A \right|}=I\;\; (Provided \left| A \right|\ne 0)\end{array} \)

And

\(\begin{array}{l}A.{{A}^{-1}}=I;\end{array} \)

\(\begin{array}{l}{{A}^{-1}}=\frac{1}{\left| A \right|}\left( Adj.\,A \right)\end{array} \)

Properties of Inverse and Adjoint of a Matrix

  • Property 1: For a square matrix A of order n, A adj(A) = adj(A) A = |A|I, where I is the identity matrix of order n.
  • Property 2: A square matrix A is invertible if and only if A is a non-singular matrix.

Problems on Finding the Inverse of a Matrix 

Illustration 1: Let

\(\begin{array}{l}A=\left[ \begin{matrix} 1 & 0 & -1 \\ 3 & 4 & 5 \\ 0 & -6 & -7 \\ \end{matrix} \right].\end{array} \)

What is inverse of A ?

Solution:

From the formula,

\(\begin{array}{l}{A}^{-1}=\frac{adj\,A}{\left| A \right|}\end{array} \)

We have

\(\begin{array}{l}{{A}_{11}}=\left[ \begin{matrix} 4 & 5 \\ -6 & -7 \\ \end{matrix} \right]=2\,\,\,{{A}_{12}}=-\left[ \begin{matrix} 3 & 5 \\ 0 & -7 \\ \end{matrix} \right]=21\end{array} \)

Similarly

\(\begin{array}{l}{{A}_{13}}=-18,{{A}_{31}}=4,{{A}_{32}}=-8,{{A}_{33}}=4,{{A}_{21}}=+6,{{A}_{22}}=-7,{{A}_{23}}=6\end{array} \)

cofactor matrix of A

\(\begin{array}{l}=\begin{bmatrix} 2 & 21 & -18\\ 6&-7 & 6\\ 4 & -8 & 4 \end{bmatrix}\end{array} \)

adj A = transpose of the cofactor matrix

\(\begin{array}{l}adj A =\left[ \begin{matrix} 2 & 6 & 4 \\ 21 & -7 & -8 \\ -18 & 6 & 4 \\ \end{matrix} \right]\end{array} \)

Also

\(\begin{array}{l}\left| A \right|=\left| \begin{matrix} 1 & 0 & -1 \\ 3 & 4 & 5 \\ 0 & -6 & -7 \\ \end{matrix} \right|=\left\{ 4\times \left( -7 \right)-\left( -6 \right)\times 5-3\times \left( -6 \right) \right\}\end{array} \)

= -28 + 30 + 18

= 20

\(\begin{array}{l}{{A}^{-1}}=\frac{adj\,A}{\left| A \right|}=\frac{1}{20}\left[ \begin{matrix} 2 & 6 & 4 \\ 21 & -7 & -8 \\ -18 & 6 & 4 \\ \end{matrix} \right]\end{array} \)

Illustration 2: If the product of a matrix A and

\(\begin{array}{l}\left[ \begin{matrix} 1 & 1 \\ 2 & 0 \\ \end{matrix} \right] \;is\; the\; matrix \;\left[ \begin{matrix} 3 & 2 \\ 1 & 1 \\ \end{matrix} \right],\end{array} \)

then A-1 is given by:

\(\begin{array}{l}(a) \left[ \begin{matrix}\;\;\;\; 0 & -1 \\ 2 & -4 \\ \end{matrix} \right]\;\;\;\; \\ (b) \left[ \begin{matrix} 0 & -1 \\ -2 & -4 \\ \end{matrix} \right] \;\;\;\; \\ (c)\left[ \begin{matrix} 0 & 1 \\ 2 & -4 \\ \end{matrix} \right]\end{array} \)

(d) None of these

Solution:

(a) We know if AB = C, then

\(\begin{array}{l}{{B}^{-1}}{{A}^{-1}}={{C}^{-1}}\Rightarrow {{A}^{-1}}=B{{C}^{-1}}\end{array} \)

by using this formula we will get value of A-1 in the above problem.

Here,

\(\begin{array}{l}A\left[ \begin{matrix} 1 & 1 \\ 2 & 0 \\ \end{matrix} \right]=\left[ \begin{matrix} 3 & 2 \\ 1 & 1 \\ \end{matrix} \right]\Rightarrow {{A}^{-1}}=\left[ \begin{matrix} 1 & 1 \\ 2 & 0 \\ \end{matrix} \right]{{\left[ \begin{matrix} 3 & 2 \\ 1 & 1 \\ \end{matrix} \right]}^{-1}}=\left[ \begin{matrix} 1 & 1 \\ 2 & 0 \\ \end{matrix} \right]\left[ \begin{matrix} 1 & -2 \\ -1 & 3 \\ \end{matrix} \right]=\left[ \begin{matrix} 0 & 1 \\ 2 & -4 \\ \end{matrix} \right]\end{array} \)

Illustration 3:

Let

\(\begin{array}{l}A =\left[ \begin{matrix} 2 & 1 & -1 \\ 0 & 1 & 0 \\ 1 & 3 & -1 \\ \end{matrix} \right]\;and\; B =\left[ \begin{matrix} 1 & 2 & 5 \\ 2 & 3 & 1 \\ -1 & 1 & 1 \\ \end{matrix} \right]. \;Prove\; that \;{{\left( AB \right)}^{-1}}={{B}^{-1}}{{A}^{-1}}.\end{array} \)

Solution:

By obtaining | AB | and adj AB we can obtain (AB)-1 by using the formula

\(\begin{array}{l}{{\left( AB \right)}^{-1}}=\frac{adj\,AB}{\left| AB \right|}.\end{array} \)

Similarly, we can also obtain the values of B-1 and A-1. Then by multiplying B-1 and A-1, we can prove the given problem.

Here,

\(\begin{array}{l}AB=\left[ \begin{matrix} 2 & 1 & -1 \\ 0 & 1 & 0 \\ 1 & 3 & -1 \\ \end{matrix} \right]\left[ \begin{matrix} 1 & 2 & 5 \\ 2 & 3 & 1 \\ -1 & 1 & 1 \\ \end{matrix} \right]=\left[ \begin{matrix} 2+2+1 & 4+3-1 & 10+1-1 \\ 0+2+0 & 0+3+0 & 0+1+0 \\ 1+6+1 & 2+9-1 & 5+3-1 \\ \end{matrix} \right]=\left[ \begin{matrix} 5 & 6 & 10 \\ 2 & 3 & 1 \\ 8 & 10 & 7 \\ \end{matrix} \right]\end{array} \)

Now,

\(\begin{array}{l}\left| AB \right|=\left| \begin{matrix} 5 & 6 & 10 \\ 2 & 3 & 1 \\ 8 & 10 & 7 \\ \end{matrix} \right|=5\left( 21-10 \right)-6\left( 14-8 \right)+10\left( 20-24 \right)=55-36-40=-21.\end{array} \)

The matrix of cofactors of | AB | is equal to

\(\begin{array}{l}\left[ \begin{matrix} 3\left( 7 \right)-1\left( 10 \right) & -\left\{ 2\left( 7 \right)-8\left( 1 \right) \right\} & 2\left( 10 \right)-3\left( 8 \right) \\ -\left\{ 6\left( 7 \right)-10\left( 10 \right) \right\} & 5\left( 7 \right)-8\left( 10 \right) & -\left\{ 5\left( 10 \right)-6\left( 8 \right) \right\} \\ 6\left( 1 \right)-10\left( 3 \right) & -\left\{ 5\left( 1 \right)-2\left( 10 \right) \right\} & 5\left( 3 \right)-6\left( 2 \right) \\ \end{matrix} \right]=\left[ \begin{matrix} 11 & -6 & -4 \\ 58 & -45 & -2 \\ -24 & 15 & 3 \\ \end{matrix} \right]\end{array} \)

adj AB =

\(\begin{array}{l}\left[ \begin{matrix} 11 & 58 & -24 \\ -6 & -45 & 15 \\ -4 & -2 & 3 \\ \end{matrix} \right]\\ So, \,\,{{\left( AB \right)}^{-1}}=\frac{adj\,AB}{\left| AB \right|}=\frac{-1}{21}\left[ \begin{matrix} 11 & 58 & -24 \\ -6 & -45 & 15 \\ -4 & -2 & 3 \\ \end{matrix} \right]\end{array} \)

Next,

\(\begin{array}{l}\left| B \right|=\left| \begin{matrix} 1 & 2 & 5 \\ 2 & 3 & 1 \\ -1 & 1 & 1 \\ \end{matrix} \right|=1\left( 3-1 \right)-2\left( 2+1 \right)+5\left( 2+3 \right)=21\end{array} \)

Cofactor matrix of B 

\(\begin{array}{l}=\begin{bmatrix} 2 & -3 &5 \\ 3& 6 & -3\\ -13 & 9 & -1 \end{bmatrix}\end{array} \)

\(\begin{array}{l}adj B =\begin{bmatrix} 2 & 3 & -13\\ -3&6 &9 \\ 5 & -3 &-1 \end{bmatrix}\end{array} \)

\(\begin{array}{l}{{B}^{-1}}=\frac{adj\,B}{\left| B \right|}=\frac{1}{21}\left[ \begin{matrix} 2 & 3 & -13 \\ -3 & 6 & 9 \\ 5 & -3 & -1 \\ \end{matrix} \right]; \;\;\left| A \right|=\left[ \begin{matrix} 2 & 1 & -1 \\ 0 & 1 & 0 \\ 1 & 3 & -1 \\ \end{matrix} \right]=1\left( -2+1 \right)=-1\end{array} \)

Similarly, cofactor matrix of A

\(\begin{array}{l}=\begin{bmatrix} -1 & 0 & -1\\ -2&-1 & -5\\ 1 & 0 & 2 \end{bmatrix}\end{array} \)

\(\begin{array}{l}\,\,{{A}^{-1}}=\frac{adj\,A}{\left| A \right|}=\frac{1}{-1}\left[ \begin{matrix} -1 & -2 & 1 \\ 0 & -1 & 0 \\ -1 & -5 & 2 \\ \end{matrix} \right]\end{array} \)

\(\begin{array}{l}{{B}^{-1}}{{A}^{-1}}=-\frac{1}{21}\left[ \begin{matrix} 2 & 3 & -13 \\ -3 & 6 & 9 \\ 5 & -3 & -1 \\ \end{matrix} \right]\left[ \begin{matrix} -1 & -2 & 1 \\ 0 & -1 & 0 \\ -1 & -5 & 2 \\ \end{matrix} \right]\end{array} \)

\(\begin{array}{l}=-\frac{1}{21}\left[ \begin{matrix} 11 & 58 & -24 \\ -6 & -45 & 15 \\ -4 & -2 & 3 \\ \end{matrix} \right] \;\;\\ Thus, \;\;\;{{\left( AB \right)}^{-1}}={{B}^{-1}}{{A}^{-1}}\end{array} \)

Illustration 4: If

\(\begin{array}{l}A=\left[ \begin{matrix} 0 & 2y & z \\ x & y & -z \\ x & -y & z \\ \end{matrix} \right] satisfies\; A’={{A}^{-1}},\end{array} \)

then

\(\begin{array}{l}(a)\ x=\pm 1/\sqrt{6},y=\pm 1/\sqrt{6},z=\pm 1/\sqrt{3}\;\; \;\;\;\;\;\;\; (b)\ x=\pm 1/\sqrt{2},y=\pm 1/\sqrt{6},z=\pm 1/\sqrt{3}\end{array} \)

\(\begin{array}{l}(c)\ x=\pm 1/\sqrt{6},y=\pm 1/\sqrt{2},z=\pm 1/\sqrt{3} \;\;\;\;\;\;\;\;\;\;\;\; (d)\ x=\pm 1/\sqrt{2},y=\pm 1/3,z=\pm 1/\sqrt{2}\end{array} \)

Solution:

(b) Given that

\(\begin{array}{l}A’={{A}^{-1}}\end{array} \)

and we know that

\(\begin{array}{l}A{{A}^{-1}}=I\end{array} \)

, and therefore,

\(\begin{array}{l}AA’=I.\end{array} \)

. Using the multiplication method, we can obtain values of x, y and z.

\(\begin{array}{l}A’={{A}^{-1}}\Leftrightarrow AA’=1\end{array} \)

Now,

\(\begin{array}{l}AA’=\left[ \begin{matrix} 0 & 2y & z \\ x & y & -z \\ x & -y & z \\ \end{matrix} \right]\left[ \begin{matrix} 0 & x & x \\ 2y & y & -y \\ z & -z & z \\ \end{matrix} \right]=\left[ \begin{matrix} 4{{y}^{2}}+{{z}^{2}} & 2{{y}^{2}}-{{z}^{2}} & -2{{y}^{2}}+{{z}^{{2}}} \\ 2{{y}^{2}}-{{z}^{2}} & {{x}^{2}}+{{y}^{2}}+{{z}^{2}} & {{x}^{2}}-{{y}^{2}}-{{z}^{2}} \\ -2{{y}^{2}}+{{z}^{2}} & {{x}^{2}}-{{y}^{2}}-{{z}^{2}} & {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \\ \end{matrix} \right]\end{array} \)

Thus,

\(\begin{array}{l}AA’=I\;\;\;\;\;\;\; \Rightarrow 4{{y}^{2}}+{{z}^{2}}=1,2{{y}^{2}}-{{z}^{2}}=0, \;\;\;\;\;\;\; {{x}^{2}}+{{y}^{2}}+{{z}^{2}}=1,{{x}^{2}}-{{y}^{2}}-{{z}^{2}}=0\end{array} \)

\(\begin{array}{l}x=\pm 1/\sqrt{2},y=\pm 1/\sqrt{6},z=\pm 1/\sqrt{3}\end{array} \)

Illustration 5: If

\(\begin{array}{l}A=\left[ \begin{matrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & x & 1 \\ \end{matrix} \right] \;\;and \;\;{{A}^{-1}}=\left[ \begin{matrix} 1/2 & -1/2 & 1/2 \\ -4 & 3 & y \\ 5/2 & -3/2 & 1/2 \\ \end{matrix} \right],\end{array} \)

then

(a) x = 1, y = -1

(b) x = -1, y = 1

(c) = x = 2, y = -1/2

(d) x = 1/2, y = 1/2

Solution:

(a) We know that

\(\begin{array}{l}A{{A}^{-1}}=I, \end{array} \)

; hence by solving it, we can obtain the values of x and y.

We have

\(\begin{array}{l}\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{matrix} \right]=A{{A}^{-1}}=\left[ \begin{matrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & x & 1 \\ \end{matrix} \right]\left[ \begin{matrix} 1/2 & -1/2 & 1/2 \\ -4 & 3 & y \\ 5/2 & -3/2 & 1/2 \\ \end{matrix} \right]=\left[ \begin{matrix} 1 & 0 & y+1 \\ 0 & 1 & 2\left( y+1 \right) \\ 4\left( 1-x \right) & 3\left( x-1 \right) & 2+xy \\ \end{matrix} \right]\end{array} \)

\(\begin{array}{l}\Rightarrow \,\,\,1-x=0,x-1=0;y+1=0,y+1=0,2+xy=1\end{array} \)

∴ x = 1, y = -1

Frequently Asked Questions

Q1

Give the formula to find the Inverse of a matrix A.

The Inverse of a matrix A is given by A-1=adj A/det A.

Q2

What do you mean by the adjoint of a matrix?

The adjoint of a matrix is the transpose of the cofactor matrix of that matrix.

Q3

Give the cofactor formula.

The cofactor formula is given by Aij = (-1)i+j det Mij. Here, det Mij is the minor of aij.

Q4

What is A (adj A) if A is a square matrix of order n?

If A is a square matrix of order n, then A adj(A) = adj(A) A = |A|I, where I is the identity matrix of order n.

Q5

What do you mean by the minor of a determinant?

The minor of an element aij of a determinant is calculated by deleting its ith row and jth column in which the element aij lies. We can denote the minor of an element aij by Mij.

Q6

What do you mean by a non-singular matrix?

A square matrix X is said to be non-singular if |X| ≠ 0, i.e. the determinant will be a non-zero value.

Q7

What do you mean by a singular matrix?

A square matrix B is said to be singular if |B| = 0.

Q8

How to find the adjoint of a 2×2 matrix?

Interchange the elements on the main diagonal (a11 and a22). Then, give the negative sign for the elements at a12 and a21 positions. The resulting matrix is the adjoint of the given 2×2 matrix.

Er. Neeraj K.Anand is a freelance mentor and writer who specializes in Engineering & Science subjects. Neeraj Anand received a B.Tech degree in Electronics and Communication Engineering from N.I.T Warangal & M.Tech Post Graduation from IETE, New Delhi. He has over 30 years of teaching experience and serves as the Head of Department of ANAND CLASSES. He concentrated all his energy and experiences in academics and subsequently grew up as one of the best mentors in the country for students aspiring for success in competitive examinations. In parallel, he started a Technical Publication "ANAND TECHNICAL PUBLISHERS" in 2002 and Educational Newspaper "NATIONAL EDUCATION NEWS" in 2014 at Jalandhar. Now he is a Director of leading publication "ANAND TECHNICAL PUBLISHERS", "ANAND CLASSES" and "NATIONAL EDUCATION NEWS". He has published more than hundred books in the field of Physics, Mathematics, Computers and Information Technology. Besides this he has written many books to help students prepare for IIT-JEE and AIPMT entrance exams. He is an executive member of the IEEE (Institute of Electrical & Electronics Engineers. USA) and honorary member of many Indian scientific societies such as Institution of Electronics & Telecommunication Engineers, Aeronautical Society of India, Bioinformatics Institute of India, Institution of Engineers. He has got award from American Biographical Institute Board of International Research in the year 2005.

CBSE Class 12 Maths Syllabus 2025-26 with Marks Distribution

The table below shows the marks weightage along with the number of periods required for teaching. The Maths theory paper is of 80 marks, and the internal assessment is of 20 marks which totally comes out to be 100 marks.

CBSE Class 12 Maths Syllabus And Marks Distribution 2023-24

Max Marks: 80

No.UnitsMarks
I.Relations and Functions08
II.Algebra10
III.Calculus35
IV.Vectors and Three – Dimensional Geometry14
V.Linear Programming05
VI.Probability08
Total Theory80
Internal Assessment20
Grand Total100

Unit-I: Relations and Functions

1. Relations and Functions

Types of relations: reflexive, symmetric, transitive and equivalence relations. One to one and onto functions.

2. Inverse Trigonometric Functions

Definition, range, domain, principal value branch. Graphs of inverse trigonometric functions.

Unit-II: Algebra

1. Matrices

Concept, notation, order, equality, types of matrices, zero and identity matrix, transpose of a matrix, symmetric and skew symmetric matrices. Operations on matrices: Addition and multiplication and multiplication with a scalar. Simple properties of addition, multiplication and scalar multiplication. Noncommutativity of multiplication of matrices and existence of non-zero matrices whose product is the zero matrix (restrict to square matrices of order 2). Invertible matrices and proof of the uniqueness of inverse, if it exists; (Here all matrices will have real entries).

2. Determinants

Determinant of a square matrix (up to 3 x 3 matrices), minors, co-factors and applications of determinants in finding the area of a triangle. Adjoint and inverse of a square matrix. Consistency, inconsistency and number of solutions of system of linear equations by examples, solving system of linear equations in two or three variables (having unique solution) using inverse of a matrix.

Unit-III: Calculus

1. Continuity and Differentiability

Continuity and differentiability, derivative of composite functions, chain rule, derivative of inverse trigonometric functions like sin-1 x, cos-1 x and tan-1 x, derivative of implicit functions. Concept of exponential and logarithmic functions.
Derivatives of logarithmic and exponential functions. Logarithmic differentiation, derivative of functions expressed in parametric forms. Second order derivatives.

2. Applications of Derivatives

Applications of derivatives: rate of change of quantities, increasing/decreasing functions, maxima and minima (first derivative test motivated geometrically and second derivative test given as a provable tool). Simple problems (that illustrate basic principles and understanding of the subject as well as real-life situations).

3. Integrals 

Integration as inverse process of differentiation. Integration of a variety of functions by substitution, by partial fractions and by parts, Evaluation of simple integrals of the following types and problems based on them.

Fundamental Theorem of Calculus (without proof). Basic properties of definite integrals and evaluation of definite integrals.

4. Applications of the Integrals

Applications in finding the area under simple curves, especially lines, circles/ parabolas/ellipses (in standard form only)

5. Differential Equations

Definition, order and degree, general and particular solutions of a differential equation. Solution of differential equations by method of separation of variables, solutions of homogeneous differential equations of first order and first degree. Solutions of linear differential equation of the type:

dy/dx + py = q, where p and q are functions of x or constants.

dx/dy + px = q, where p and q are functions of y or constants.

Unit-IV: Vectors and Three-Dimensional Geometry

1. Vectors

Vectors and scalars, magnitude and direction of a vector. Direction cosines and direction ratios of a vector. Types of vectors (equal, unit, zero, parallel and collinear vectors), position vector of a point, negative of a vector, components of a vector, addition of vectors, multiplication of a vector by a scalar, position vector of a point dividing a line segment in a given ratio. Definition, Geometrical Interpretation, properties and application of scalar (dot) product of vectors, vector (cross) product of vectors.

2. Three – dimensional Geometry

Direction cosines and direction ratios of a line joining two points. Cartesian equation and vector equation of a line, skew lines, shortest distance between two lines. Angle between two lines.

Unit-V: Linear Programming

1. Linear Programming

Introduction, related terminology such as constraints, objective function, optimization, graphical method of solution for problems in two variables, feasible and infeasible regions (bounded or unbounded), feasible and infeasible solutions, optimal feasible solutions (up to three non-trivial constraints).

Unit-VI: Probability

1. Probability

Conditional probability, multiplication theorem on probability, independent events, total probability, Bayes’ theorem, Random variable and its probability distribution, mean of random variable.

Students can go through the CBSE Class 12 Syllabus to get the detailed syllabus of all subjects. Get access to interactive lessons and videos related to Maths and Science with ANAND CLASSES’S App/ Tablet.

Frequently Asked Questions on CBSE Class 12 Maths Syllabus 2025-26

Q1

Is Calculus an important chapter in the CBSE Class 12 Maths Syllabus?

Yes, Calculus is an important chapter in the CBSE Class 12 Maths Syllabus. It is for 35 marks which means that if a student is thorough with this chapter will be able to pass the final exam.

Q2

How many units are discussed in the CBSE Class 12 Maths Syllabus?

In the CBSE Class 12 Maths Syllabus, about 6 units are discussed, which contains a total of 13 chapters.

Q3

How many marks are allotted for internals in the CBSE Class 12 Maths syllabus?

About 20 marks are allotted for internals in the CBSE Class 12 Maths Syllabus. Students can score it with ease through constant practice.