Matrices Miscellaneous Exercise NCERT Solutions Class 12 Math Chapter 3 free PDF Download

Chapter 3 of the Class 12 NCERT Mathematics textbook, titled “Matrices,” covers fundamental concepts related to matrices, including operations such as addition, multiplication, and finding determinants and inverses. The Miscellaneous Exercise in this chapter provides a range of problems that integrate these concepts, helping students apply their understanding of matrices in various contexts and deepen their problem-solving skills.

NCERT Solutions for Class 12 – Mathematics – Chapter 3 Matrices – Miscellaneous Exercise

This section provides detailed solutions for the Miscellaneous Exercise from Chapter 3 of the Class 12 NCERT Mathematics textbook. The exercise includes problems on matrix operations, determinants, and inverses, designed to challenge students and reinforce their comprehension of matrix theory. The solutions offer step-by-step explanations to ensure a thorough understanding of each concept.

Question 1: Let [Tex]A =\begin{bmatrix} 0 & 1\\ 0 & 0 \end{bmatrix}  [/Tex], show that (aI + bA)n = an I + nan – 1 bA, where I is the identity matrix of order 2 and n ∈ N.

Solution:

Using mathematical induction,

Step 1: Let’s check for n=1

(aI + bA)n = (aI + bA)1 = (aI + bA)

anI + nan – 1 bA = aI + 1a1 – 1 bA = (aI + bA)

It is true for P(1)

Step 2: Now take n=k

(aI + bA)k = akI + kak – 1 bA …………………(1)

Step 3: Let’s check whether, its true for n = k+1

(aI + bA)k+1 = (aI + bA)k (aI + bA)

= (akI + kak – 1 bA) (aI + bA)

= ak+1I×I + kak bAI + ak bAI + kak-1 b2AA

AA = [Tex]\begin{bmatrix} 0 & 1\\ 0 & 0 \end{bmatrix}\begin{bmatrix} 0 & 1\\ 0 & 0 \end{bmatrix} = 0 [/Tex]

= ak+1I×I + kak bAI + ak bAI + 0

= ak+1I + (k+1)ak+1-1 bA

= P(k+1)

Hence, P(n) is true.

Question 2: If [Tex]A =\begin{bmatrix} 1 & 1 &1\\ 1 & 1 &1\\ 1 & 1 &1 \end{bmatrix}  [/Tex], prove that [Tex]A^n =\begin{bmatrix} 3^{n-1} & 3^{n-1} &3^{n-1}\\ 3^{n-1} & 3^{n-1} & 3^{n-1}\\ 3^{n-1} & 3^{n-1} & 3^{n-1} \end{bmatrix} ,n\in N[/Tex]

Solution:

Using mathematical induction,

Step 1: Let’s check for n=1

[Tex]A^1 =\begin{bmatrix} 3^{1-1} & 3^{1-1} &3^{1-1}\\ 3^{1-1} & 3^{1-1} & 3^{1-1}\\ 3^{1-1} & 3^{1-1} & 3^{1-1} \end{bmatrix}=\begin{bmatrix} 1 & 1 &1\\ 1 & 1 &1\\ 1 & 1 &1 \end{bmatrix}[/Tex]

It is true for P(1)

Step 2: Now take n=k

[Tex]A^k =\begin{bmatrix} 3^{k-1} & 3^{k-1} &3^{k-1}\\ 3^{k-1} & 3^{k-1} &3^{k-1}\\ 3^{k-1} & 3^{k-1} &3^{k-1} \end{bmatrix}[/Tex]

Step 3: Let’s check whether, its true for n = k+1

[Tex]A^{k+1}=A^kA=\begin{bmatrix} 3^{k-1} & 3^{k-1} &3^{k-1}\\ 3^{k-1} & 3^{k-1} &3^{k-1}\\ 3^{k-1} & 3^{k-1} &3^{k-1} \end{bmatrix} \begin{bmatrix} 1 & 1 &1\\ 1 & 1 &1\\ 1 & 1 &1 \end{bmatrix}\\ A^{k+1} = \begin{bmatrix} 3^k & 3^k &3^k\\ 3^k & 3^k &3^k\\ 3^k & 3^k &3^k \end{bmatrix}\\ A^{k+1} = \begin{bmatrix} 3^{k+1-1} & 3^{k+1-1} &3^{k+1-1}\\ 3^{k+1-1} & 3^{k+1-1} &3^{k+1-1}\\ 3^{k+1-1} & 3^{k+1-1} &3^{k+1-1} \end{bmatrix}[/Tex]

= P(k+1)

Hence, P(n) is true.

Question 3: If [Tex]A =\begin{bmatrix} 3 & -4\\ 1 & -1 \end{bmatrix}[/Tex], prove that [Tex]A^n =\begin{bmatrix} 1+2n & -4n\\ n & 1-2n \end{bmatrix}  [/Tex] ,where n is any positive integer.

Solution:

Using mathematical induction,

Step 1: Let’s check for n=1

[Tex]A^1 = A =\begin{bmatrix} 1+2(1) & -4(1)\\ n & 1-2(1) \end{bmatrix}=\begin{bmatrix} 3 & -4\\ 1 & -1 \end{bmatrix}  [/Tex]

It is true for P(1)

Step 2: Now take n=k

[Tex]A^k =\begin{bmatrix} 1+2k & -4k\\ k & 1-2k \end{bmatrix}[/Tex]

Step 3: Let’s check whether, its true for n = k+1

[Tex]A^{k+1} = A^kA =\begin{bmatrix} 1+2k & -4k\\ k & 1-2k \end{bmatrix}\begin{bmatrix} 3 & -4\\ 1 & -1 \end{bmatrix}\\ = \begin{bmatrix} 3(1+2k)+1(-4k) & -4(1+2k)+(-1)(-4k)\\ 3k+1(1-2k) & (-4)(k)+(-1)(1-2k) \end{bmatrix}\\ = \begin{bmatrix} 3+6k-4k & -4-8k+4k\\ 3k+1-2k & -4k-1+2k \end{bmatrix}\\ = \begin{bmatrix} 3+2k & -4-4k\\ k+1 & -2k-1 \end{bmatrix}\\ = \begin{bmatrix} 1+2(k+1) & -4(k+1)\\ k+1 & 1-2(k+1) \end{bmatrix}\\[/Tex]

= P(k+1)

Hence, P(n) is true.

Question 4. If A and B are symmetric matrices, prove that AB – BA is a skew-symmetric matrix.

Solution:

As, it is mentioned that A and B are symmetric matrices,

A’ = A and B’ = B

(AB – BA)’ = (AB)’ – (BA)’  (using, (A-B)’ = A’ – B’)

= B’A’ – A’B’                     (using, (AB)’ = B’A’)

= BA – AB

(AB – BA)’ = – (AB – BA)

Hence, AB – BA is a skew symmetric matrix

Question 5. Show that the matrix B′AB is symmetric or skew-symmetric according as A is symmetric or skew-symmetric.

Solution:

Let’s take A as symmetric matrix

A’ = A

Then,

(B′AB)’ = {B'(AB)}’

= (AB)’ (B’)’            (using, (AB)’ = B’A’)

= B’A’ (B)              (using, (AB)’ = B’A’ and (B’)’ = B)

= B’A B

As, here (B′AB)’ = B’A B. It is a symmetric matrix.

Let’s take A as skew matrix

A’ = -A

Then,

(B′AB)’ = {B'(AB)}’

= (AB)’ (B’)’            (using, (AB)’ = B’A’)

= B’A’ (B)              (using, (AB)’ = B’A’ and (B’)’ = B)

= B'(-A) B

= – B’A B

As, here (B′AB)’ = -B’A B. It is a skew matrix.

Hence, we can conclude that B′AB is symmetric or skew symmetric according as A is symmetric or skew symmetric.

Question 6. Find the values of x, y, z if the matrix [Tex]A =\begin{bmatrix} 0 & 2y &z\\ x & y &-z\\ x & -y &z \end{bmatrix}  [/Tex] satisfy the equation A′A = I

Solution:

[Tex]A =\begin{bmatrix} 0 & 2y &z\\ x & y &-z\\ x & -y &z \end{bmatrix} [/Tex]

[Tex]A’ =\begin{bmatrix} 0 & 2y &z\\ x & y &-z\\ x & -y &z \end{bmatrix}^T=\begin{bmatrix} 0 & x &x\\ 2y & y &-y\\ z & -z &z \end{bmatrix} [/Tex]

A’A = [Tex]I =\begin{bmatrix} 0 & 2y &z\\ x & y &-z\\ x & -y &z \end{bmatrix}\begin{bmatrix} 0 & x &x\\ 2y & y &-y\\ z & -z &z \end{bmatrix} [/Tex]

[Tex]\begin{bmatrix} 0 & 2y &z\\ x & y &-z\\ x & -y &z \end{bmatrix}\begin{bmatrix} 0 & x &x\\ 2y & y &-y\\ z & -z &z \end{bmatrix} = \begin{bmatrix} 1 & 0 &0\\ 0 & 1 &0\\ 0 & 0 &1 \end{bmatrix}[/Tex]

[Tex]\begin{bmatrix} 0+x^2+x^2 & 0+xy-xy &0-xz+xz\\ 0+xy-xy & 4y^2+y^2+y^2 &2yz-yz-yz\\ 0-zx+zx & 2yz-yz-yz &z^2+z^2+z^2 \end{bmatrix} = \begin{bmatrix} 1 & 0 &0\\ 0 & 1 &0\\ 0 & 0 &1 \end{bmatrix}[/Tex]

[Tex]\begin{bmatrix} 2x^2 & 0 &0\\ 0 & 6y^2 &0\\ 0 & 0 &3z^2 \end{bmatrix} = \begin{bmatrix} 1 & 0 &0\\ 0 & 1 &0\\ 0 & 0 &1 \end{bmatrix}[/Tex]

By evaluating the values, we have

2x2 = 1

x = ± [Tex]\frac{1}{\sqrt{2}}[/Tex]

6y2 = 1

y = ± [Tex]\frac{1}{\sqrt{6}}[/Tex]

3z2 = 1

z = ± [Tex]\frac{1}{\sqrt{3}}[/Tex]

Question 7: For what values of x : [Tex]\begin{bmatrix} 1 & 2 &1 \end{bmatrix} \begin{bmatrix} 1 & 2 &0\\ 2 & 0 &1\\ 1 & 0 &2 \end{bmatrix} \begin{bmatrix} 0\\ 2\\ x \end{bmatrix} = 0[/Tex]

Solution:

[Tex]\begin{bmatrix} 1 & 2 &1 \end{bmatrix} \begin{bmatrix} 1 & 2 &0\\ 2 & 0 &1\\ 1 & 0 &2 \end{bmatrix} \begin{bmatrix} 0\\ 2\\ x \end{bmatrix} = 0[/Tex]

[Tex]\begin{bmatrix} 1+4+1 & 2+0+0 &0+2+2 \end{bmatrix} \begin{bmatrix} 0\\ 2\\ x \end{bmatrix} = 0[/Tex]

[Tex]\begin{bmatrix} 6 & 2 &4 \end{bmatrix} \begin{bmatrix} 0\\ 2\\ x \end{bmatrix} = 0[/Tex]

[Tex]\begin{bmatrix} 6(0) + 2(2) +4(x) \end{bmatrix}= 0\\ \begin{bmatrix} 0 + 4 +4x \end{bmatrix}= 0\\ 4(x+1) = 0\\ x+1 = 0\\ x = -1[/Tex]

Question 8: If [Tex]A =\begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}  [/Tex], show that A2 – 5A + 7I = 0.

Solution:

[Tex]A^2 = AA =\begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}\begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}\\ = \begin{bmatrix} 9-1 & 3+2 \\ -3-2 & -1+4 \end{bmatrix}\\ = \begin{bmatrix} 8 & 5 \\ -5 & 3 \end{bmatrix}[/Tex]

[Tex]5A =5\begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} =\begin{bmatrix} 15 & 5 \\ -5 & 10 \end{bmatrix} [/Tex]

[Tex]7I =7\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}= \begin{bmatrix} 7 & 0 \\ 0 & 7 \end{bmatrix}[/Tex]

A2 – 5A + 7I = [Tex]\begin{bmatrix} 8 & 5 \\ -5 & 3 \end{bmatrix}-\begin{bmatrix} 15 & 5 \\ -5 & 10 \end{bmatrix}+ \begin{bmatrix} 7 & 0 \\ 0 & 7 \end{bmatrix}\\ =\begin{bmatrix} 8-15+7 & 3-3+0 \\ -5+5+0 & 3-10+7 \end{bmatrix}\\ = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}[/Tex]

Hence proved!

Question 9: Find x, if [Tex]\begin{bmatrix} x & -5 &-1 \end{bmatrix} \begin{bmatrix} 1 & 0 &2\\ 0 & 2 &1\\ 2 & 0 &3 \end{bmatrix} \begin{bmatrix} x\\ 4\\ 1 \end{bmatrix} = 0[/Tex]

Solution:

[Tex]\begin{bmatrix} x & -5 &-1 \end{bmatrix} \begin{bmatrix} 1 & 0 &2\\ 0 & 2 &1\\ 2 & 0 &3 \end{bmatrix} \begin{bmatrix} x\\ 4\\ 1 \end{bmatrix} = 0\\ \begin{bmatrix} x+0-2 & 0-10+0 &2x-5-3 \end{bmatrix}  \begin{bmatrix} x\\ 4\\ 1 \end{bmatrix} = 0\\ \begin{bmatrix} x-2 & -10 &2x-8 \end{bmatrix}  \begin{bmatrix} x\\ 4\\ 1 \end{bmatrix} = 0\\ \begin{bmatrix} x(x-2) + (-10)(4) +1(2x-8) \end{bmatrix}= 0\\ \begin{bmatrix} x^2-2x -40+2x-8 \end{bmatrix}= 0\\ \begin{bmatrix} x^2-48 \end{bmatrix}= 0\\ x^2 = 48\\ x = \pm \sqrt{48}\\ x = \pm 4\sqrt{3}[/Tex]

Question 10: A manufacturer produces three products x, y, z which he sells in two markets.

Annual sales are indicated below:

MarketProducts
I10,0002,00018,000
II6,00020,0008,000

(a) If unit sale prices of x, y and z are ₹ 2.50, ₹ 1.50 and ₹ 1.00, respectively, find the total revenue in each market with the help of matrix algebra.

Solution:

Total revenue in market I and II can be arranged from given data as follows:

[Tex]\begin{bmatrix} 10,000 & 2,000 &18,000\\6,000 & 20,000 &8,000 \end{bmatrix} \begin{bmatrix} 2.5 \\ 1.5 \\1 \end{bmatrix}[/Tex]

After multiplication, we get

[Tex]\begin{bmatrix} 25,000 + 3,000 +18,000\\15,000 + 30,000 +8,000 \end{bmatrix}=\begin{bmatrix} 46,000\\53,000 \end{bmatrix}[/Tex]

Hence, the total revenue in Market I and market II are ₹ 46,000 and ₹ 53,000 respectively.

(b) If the unit costs of the above three commodities are ₹ 2.00, ₹ 1.00 and 50 paise respectively. Find the gross profit.

Solution:

Total cost prices of all the products in market I and market II can be arranged from given data as follows:

[Tex]\begin{bmatrix} 10,000 & 2,000 &18,000\\6,000 & 20,000 &8,000 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\0.5 \end{bmatrix}[/Tex]

After multiplication, we get

[Tex]\begin{bmatrix} 20,000 + 2,000 +9,000\\12,000 + 20,000 +4,000 \end{bmatrix}=\begin{bmatrix} 31,000\\36,000 \end{bmatrix}[/Tex]

As, Profit earned = Total revenue – Cost price

Profit earned [Tex]=\begin{bmatrix} 46,000\\53,000 \end{bmatrix}-\begin{bmatrix} 31,000\\36,000 \end{bmatrix}[/Tex]

Profit earned = [Tex]=\begin{bmatrix} 15,000\\17,000 \end{bmatrix}[/Tex]

Hence, profit earned in Market I and market II are ₹ 15,000 and ₹ 17,000 respectively. Which is equal to ₹ 32,000

Question 11. Find the matrix X so that [Tex]X\begin{bmatrix} 1 & 0 &2\\ 0 & 2 &1 \end{bmatrix}= \begin{bmatrix} -7 & -8 &-9\\ 2 & 4 &6 \end{bmatrix}[/Tex]

Solution:

[Tex]X\begin{bmatrix} 1 & 0 &2\\ 0 & 2 &1 \end{bmatrix}= \begin{bmatrix} -7 & -8 &-9\\ 2 & 4 &6 \end{bmatrix}[/Tex]

Here, the RHS is a 2×3 matrix and LHS is 2×3. So, X will be 2×2 matrix.

Let’s take X as,

[Tex]X= \begin{bmatrix} p & q \\ r & s \end{bmatrix}[/Tex]

Now solving the matrix, we have

[Tex]\begin{bmatrix} p & q\\ r & s \end{bmatrix}\begin{bmatrix} 1 & 0 &2\\ 0 & 2 &1 \end{bmatrix}= \begin{bmatrix} -7 & -8 &-9\\ 2 & 4 &6 \end{bmatrix}\\ \begin{bmatrix} p+4q & 2p+5qb &3p+6q\\ r+4s & 2r+5s &3r+6s \end{bmatrix}= \begin{bmatrix} -7 & -8 &-9\\ 2 & 4 &6 \end{bmatrix}\\[/Tex]

Equating each of them, we get

p+4q = -7 ………..(1)

2p+5q = -8 ………….(2)

3p + 6q = -9

r + 4s = 2 …………(3)

2r + 5s = 4 ……………(5)

3r + 6s = 6

Solving (1) and (2), we get

p = 1 and q = -2

Solving (3) and (4), we get

r = 2 and s = 0

Hence, matrix X is 

[Tex]X= \begin{bmatrix} 1 & -2 \\ 2 & 0 \end{bmatrix}[/Tex]

Question 12: If A and B are square matrices of the same order such that AB = BA, then prove by induction that ABn = BnA. Further, prove that (AB)n = AnBn for all n ∈ N.

Solution:

Using mathematical induction,

Step 1: Let’s check for n=1

ABn = AB1 = AB

BnA = B1A = BA

It is true for P(1)

Step 2: Now take n=k

ABk = BkA

Step 3: Let’s check whether, its true for n = k+1

AB(k+1) = ABkB

= BkAB

= Bk+1 A

= P(k+1)

Hence, P(n) is true.

Now, for (AB)n = AnBn

Using mathematical induction,

Step 1: Let’s check for n=1

(AB)1 = AB

B1A1 = BA

It is true for P(1)

Step 2: Now take n=k

(AB)k = AkBk

Step 3: Let’s check whether, its true for n = k+1

(AB)(k+1) = (AB)k(AB)

= AkBk AB

= Ak+1 Bk+1

= (AB)k+1

= P(k+1)

Hence, P(n) is true.

Choose the correct answer in the following questions: 

Question 13: If [Tex]A= \begin{bmatrix} \alpha & \beta \\ \gamma & -\alpha \end{bmatrix}  [/Tex] is such that A² = I, then

(A) 1 + α² + βγ = 0 

(B) 1 – α² + βγ = 0

(C) 1 – α² – βγ = 0 

(D) 1 + α² – βγ = 0

Solution:

[Tex]A^2 = AA= \begin{bmatrix} \alpha & \beta \\ \gamma & -\alpha \end{bmatrix}\begin{bmatrix} \alpha & \beta \\ \gamma & -\alpha \end{bmatrix}\\ = \begin{bmatrix} \alpha^2+\beta\gamma & 0 \\ 0 & \beta\gamma+\alpha^2 \end{bmatrix} [/Tex]

As, A2 = I

[Tex]\begin{bmatrix} \alpha^2+\beta\gamma & 0 \\ 0 & \beta\gamma+\alpha^2 \end{bmatrix}= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}[/Tex]

α² + βγ = 1

1 – α² – βγ = 0

Hence, Option (C) is correct.

Question 14. If the matrix A is both symmetric and skew symmetric, then

(A) A is a diagonal matrix 

(B) A is a zero matrix

(C) A is a square matrix 

(D) None of these

Solution:

If the matrix A is both symmetric and skew symmetric, then

A = A’

and A = -A

Only zero matrix satisfies both the conditions.

Hence, Option (B) is correct.

Question 15. If A is square matrix such that A2 = A, then (I + A)³ – 7 A is equal to

(A) A 

(B) I – A 

(C) I 

(D) 3A

Solution:

(I + A)³ – 7 A = I3 + A3 + 3A^2 + 3AI^2 – 7A

= I3 + A3 + 3A2 + 3A – 7A

= I + A3 + 3A2 – 4A

As, A2 = A

A3 = A2A = AA = A

So, I + A3 + 3A2 – 4A = I + A + 3A – 4A = I

Hence, Option (C) is correct.

Summary

Chapter 3 of the Class 12 NCERT Mathematics textbook, “Matrices,” explores various matrix operations and concepts. The Miscellaneous Exercise provides diverse problems on matrix addition, multiplication, determinants, and inverses. It challenges students to apply these concepts and reinforces their understanding of matrix theory through detailed problem-solving.

Related Articles:

FAQs on Matrices

What are the basic operations you can perform on matrices?

The basic operations on matrices include addition, subtraction, and multiplication. You can also find the determinant and inverse of a matrix, provided the matrix is square and has a non-zero determinant.

Why are matrices important in mathematics and applied fields?

Matrices are crucial in mathematics for solving systems of linear equations, performing transformations, and representing data. In applied fields such as computer graphics, engineering, and economics, matrices are used for modeling and solving complex problems efficiently.

How do you perform matrix multiplication?

Matrix multiplication involves taking the dot product of rows from the first matrix with columns from the second matrix. The result is a new matrix where each element is the sum of the products of corresponding elements from the rows and columns.

Er. Neeraj K.Anand is a freelance mentor and writer who specializes in Engineering & Science subjects. Neeraj Anand received a B.Tech degree in Electronics and Communication Engineering from N.I.T Warangal & M.Tech Post Graduation from IETE, New Delhi. He has over 30 years of teaching experience and serves as the Head of Department of ANAND CLASSES. He concentrated all his energy and experiences in academics and subsequently grew up as one of the best mentors in the country for students aspiring for success in competitive examinations. In parallel, he started a Technical Publication "ANAND TECHNICAL PUBLISHERS" in 2002 and Educational Newspaper "NATIONAL EDUCATION NEWS" in 2014 at Jalandhar. Now he is a Director of leading publication "ANAND TECHNICAL PUBLISHERS", "ANAND CLASSES" and "NATIONAL EDUCATION NEWS". He has published more than hundred books in the field of Physics, Mathematics, Computers and Information Technology. Besides this he has written many books to help students prepare for IIT-JEE and AIPMT entrance exams. He is an executive member of the IEEE (Institute of Electrical & Electronics Engineers. USA) and honorary member of many Indian scientific societies such as Institution of Electronics & Telecommunication Engineers, Aeronautical Society of India, Bioinformatics Institute of India, Institution of Engineers. He has got award from American Biographical Institute Board of International Research in the year 2005.

CBSE Class 12 Maths Syllabus 2025-26 with Marks Distribution

The table below shows the marks weightage along with the number of periods required for teaching. The Maths theory paper is of 80 marks, and the internal assessment is of 20 marks which totally comes out to be 100 marks.

CBSE Class 12 Maths Syllabus And Marks Distribution 2023-24

Max Marks: 80

No.UnitsMarks
I.Relations and Functions08
II.Algebra10
III.Calculus35
IV.Vectors and Three – Dimensional Geometry14
V.Linear Programming05
VI.Probability08
Total Theory80
Internal Assessment20
Grand Total100

Unit-I: Relations and Functions

1. Relations and Functions

Types of relations: reflexive, symmetric, transitive and equivalence relations. One to one and onto functions.

2. Inverse Trigonometric Functions

Definition, range, domain, principal value branch. Graphs of inverse trigonometric functions.

Unit-II: Algebra

1. Matrices

Concept, notation, order, equality, types of matrices, zero and identity matrix, transpose of a matrix, symmetric and skew symmetric matrices. Operations on matrices: Addition and multiplication and multiplication with a scalar. Simple properties of addition, multiplication and scalar multiplication. Noncommutativity of multiplication of matrices and existence of non-zero matrices whose product is the zero matrix (restrict to square matrices of order 2). Invertible matrices and proof of the uniqueness of inverse, if it exists; (Here all matrices will have real entries).

2. Determinants

Determinant of a square matrix (up to 3 x 3 matrices), minors, co-factors and applications of determinants in finding the area of a triangle. Adjoint and inverse of a square matrix. Consistency, inconsistency and number of solutions of system of linear equations by examples, solving system of linear equations in two or three variables (having unique solution) using inverse of a matrix.

Unit-III: Calculus

1. Continuity and Differentiability

Continuity and differentiability, derivative of composite functions, chain rule, derivative of inverse trigonometric functions like sin-1 x, cos-1 x and tan-1 x, derivative of implicit functions. Concept of exponential and logarithmic functions.
Derivatives of logarithmic and exponential functions. Logarithmic differentiation, derivative of functions expressed in parametric forms. Second order derivatives.

2. Applications of Derivatives

Applications of derivatives: rate of change of quantities, increasing/decreasing functions, maxima and minima (first derivative test motivated geometrically and second derivative test given as a provable tool). Simple problems (that illustrate basic principles and understanding of the subject as well as real-life situations).

3. Integrals 

Integration as inverse process of differentiation. Integration of a variety of functions by substitution, by partial fractions and by parts, Evaluation of simple integrals of the following types and problems based on them.

Fundamental Theorem of Calculus (without proof). Basic properties of definite integrals and evaluation of definite integrals.

4. Applications of the Integrals

Applications in finding the area under simple curves, especially lines, circles/ parabolas/ellipses (in standard form only)

5. Differential Equations

Definition, order and degree, general and particular solutions of a differential equation. Solution of differential equations by method of separation of variables, solutions of homogeneous differential equations of first order and first degree. Solutions of linear differential equation of the type:

dy/dx + py = q, where p and q are functions of x or constants.

dx/dy + px = q, where p and q are functions of y or constants.

Unit-IV: Vectors and Three-Dimensional Geometry

1. Vectors

Vectors and scalars, magnitude and direction of a vector. Direction cosines and direction ratios of a vector. Types of vectors (equal, unit, zero, parallel and collinear vectors), position vector of a point, negative of a vector, components of a vector, addition of vectors, multiplication of a vector by a scalar, position vector of a point dividing a line segment in a given ratio. Definition, Geometrical Interpretation, properties and application of scalar (dot) product of vectors, vector (cross) product of vectors.

2. Three – dimensional Geometry

Direction cosines and direction ratios of a line joining two points. Cartesian equation and vector equation of a line, skew lines, shortest distance between two lines. Angle between two lines.

Unit-V: Linear Programming

1. Linear Programming

Introduction, related terminology such as constraints, objective function, optimization, graphical method of solution for problems in two variables, feasible and infeasible regions (bounded or unbounded), feasible and infeasible solutions, optimal feasible solutions (up to three non-trivial constraints).

Unit-VI: Probability

1. Probability

Conditional probability, multiplication theorem on probability, independent events, total probability, Bayes’ theorem, Random variable and its probability distribution, mean of random variable.

Students can go through the CBSE Class 12 Syllabus to get the detailed syllabus of all subjects. Get access to interactive lessons and videos related to Maths and Science with ANAND CLASSES’S App/ Tablet.

Frequently Asked Questions on CBSE Class 12 Maths Syllabus 2025-26

Q1

Is Calculus an important chapter in the CBSE Class 12 Maths Syllabus?

Yes, Calculus is an important chapter in the CBSE Class 12 Maths Syllabus. It is for 35 marks which means that if a student is thorough with this chapter will be able to pass the final exam.

Q2

How many units are discussed in the CBSE Class 12 Maths Syllabus?

In the CBSE Class 12 Maths Syllabus, about 6 units are discussed, which contains a total of 13 chapters.

Q3

How many marks are allotted for internals in the CBSE Class 12 Maths syllabus?

About 20 marks are allotted for internals in the CBSE Class 12 Maths Syllabus. Students can score it with ease through constant practice.