Relations & Functions-Types of Functions: Classification, One-One, Onto, Examples-Class 12 Math Chapter 1 Notes Download free pdf

Table of Contents

What is a Function?

A function is a relation between two sets set A and set B. Such that every element of set A has an image in set B and no element in set A has more than one image in set B.

Let A and B be two nonempty sets. A function or mapping f from A to B is written as f: A → B is a rule by which each element a ∈ A is associated with a unique element b ∈ B.

Function Test

Domain, Codomain, and Range of a Function

The elements of set X are called the domain of f and the elements of set Y are called the codomain of f. The images of the elements of set X are called the range of function, which is always a subset of Y. The image given below demonstrates the domain, codomain, and range of the function.

Domain, Codomain, and Range of a Function

The image demonstrates the domain, co-domain, and range of the function. Remember the element which is mapped only will be counted in the range as shown in the image. The domain, codomain, and range of the above function are:

Domain = {a, b, c}

Codomain = {1, 2, 3, 4, 5}

Range = {1, 2, 3}

Types of Functions in Maths

An example of a simple function is f(x) = x3. In this function, f(x) takes the value of “x” and then cubes it to find the value of the function. For example, if the value of x is taken to be 2, then the function gives 8 as output i.e. f(2) = 8.

Some other examples of functions are: 

f(x) = cos x, f(x) = 5x2 + 9, f(x) = 1/x3, etc.

There are several types of functions in maths. Some of the important types are:

  • One to One (Injective) function
  • Many to One function
  • Onto (Surjective) Function
  • Into Function

One to One (Injective) function

A function f: X → Y is said to be a one-to-one function if the images of distinct elements of X under f are distinct. Thus, f is one to one if f(x1) = f(x2)

Property: A function f: A → B is one-to-one if f(x1) = f(x2) implies x1 = x2, i.e, an image of a distinct element of A under f mapping (function) is distinct.

Condition to be One-to-One function: Every element of the domain has a single image with a codomain after mapping.

One to One (Injective) function

Examples of One to One Functions

Som of examples of one-one functions are:

  • f(x) = x (Identity function)
  • k(x) = 2x + 3 (Linear Polynomial)
  • g(x) = ex (Exponential function)
  • h(x) = √x​ (Square root function, defined for x ≥ 0)

Many to One Function

If the function is not one to one function, then it should be many to one function means every element of the domain has more than one image at codomain after mapping.

  • Property: One or more elements having the same image in the codomain
  • Condition to be Many to One function: One or more than one element in the domain having a single image in the codomain.
Many to One function

Examples of Many to One Function

Some of the most common examples of many to one functions are:

  • f(x) = x2 (Squared function)
  • g(x) = sin(x) (Sine function)
  • h(x) = cos(x) (Cosine function)
  • k(x) = tan(x) (Tangent function)
  • m(x) = ∣x∣ (Absolute value function)

Onto (Surjective) Function

A function f: X → Y is said to be an onto function if every element of Y is an image of some element of set X under f, i.e for every y ∈ Y there exists an element x in X such that f(x) = y.

Properties:

  • The range of functions should be equal to the codomain.
  • Every element of B is the image of some element of A.

Condition to be onto function: The range of function should be equal to the codomain.

Onto (Surjective) Function

As we see in the above two images, the range is equal to the codomain means that every element of the codomain is mapped with the element of the domain, as we know that elements that are mapped in the codomain are known as the range. So these are examples of the Onto function.

Examples of Onto Functions

Some of the most common examples of onto functions are:

  • f(x) = x (Identity function)
  • g(x) = ex (Exponential function)
  • h(x) = sin(x) (Sine function within a limited domain, e.g., h : R→[−1,1])
  • k(x) = cos(x) (Cosine function within a limited domain, e.g., k : [0,π]→[−1,1])
  • m(x) = x3 (Cubic function)

Into Function

A function f: X → Y is said to be an into a function if there exists at least one element or more than one element in Y, which does not have any pre-images in X, which simply means that every element of the codomain are not mapped with elements of the domain.

Into Function

From the above image, we can clearly see that every element of the codomain is not mapped with elements of the domain means the 10th element of the codomain is left unmapped. So this type of function is known as Into function.

Properties:

  • The Range of function is the proper subset of B
  • The Range of functions should not equal B, where B is the codomain.

Examples of Into Functions

Some examples of into functions you can consider are:

  • f(x) = sin(x) where f:R→[−1,1] is not onto because it doesn’t cover all values in the interval [−1,1][−1,1].
  • g(x) = x2 where g:R→R+ (positive real numbers) is not onto because it doesn’t map to any negative real numbers.
  • h(x) = ex where h:R→(0,∞) is not onto because it doesn’t map to zero.

Summary: Types of Functions

All types can be summarized in the following table:

Function TypeDefinitionExample
One-to-One (Injective)A function where each element of the domain maps to a unique element in the codomain.f(x) = 2x+3
Many-to-OneA function where multiple elements of the domain may map to the same element in the codomain.f(x) = x2
Onto (Surjective)A function where every element in the codomain is mapped to by at least one element in the domain.f(x) = ex, f : R→(0,∞)
Into (Non-surjective)A function that does not cover the entire codomain; there are elements in the codomain that are not mapped to by any element in the domain.f(x) = sin(x), f:R→[−1,1]

Solved Examples on Types of Function

Example 1: Check whether the function f(x) = 2x + 3, is one-to-one or not if Domain = {1, 2, 1/2} and Codomain = {5, 7, 4}

Solution:

Putting 1, 2, 1/2 in place of x in f(x) = 2x + 3, we get

f(1) = 5,
f(2) = 7,
f(1/2) = 4

As, for every value of x we get a unique f(x) thus, we can conclude that our function f(x) is One to One.

Example 2: Check whether the function is one-to-one or not: f(x) = 3x – 2

Solution:

To check whether a function is one to one or not, we have to check that elements of the domain have only a single pre-image in codomain or not. For checking, we can write the function as,

f(x1) = f(x2

3x1 – 2 = 3x2 – 2 

3x1 = 3x2 

x1 = x2  

Since both x1 =  x2 which means that elements of the domain having a single pre-image in its codomain. Hence the function f(x) = 3x – 2 is one to one function.

Example 3: Check whether the function is one-to-one or not: f(x) = x2 + 3.

Solution: 

To check whether the function is One to One or not, we will follow the same procedure. Now let’s check, we can write the function as,

f(x1) = f(x2

(x1)2 + 3 = (x2)2 + 3 

(x1)2 = (x2)2  

Since (x1)2 = (x2)2 is not always true.

Hence the function f(x) = x2 + 3 is not one to one function.

Example 4: If N: → N, f(x) = 2x + 1 then check whether the function is injective or not.

Solution:

In question N → N, where N belongs to Natural Number, which means that the domain and codomain of the function is a natural number. For checking whether the function is injective or not, we can write the functions as,

Let, f(x1) = f(x2)

2x1 + 1= 2x2 + 1

2x1 = 2x

x1 = x2

Since x1 = x2, means all elements of the domain are mapped with a single element of the codomain. Hence function f(x) = 2x + 1 is Injective (One to One).

Example 5: f(x) = x2, check whether the function is Many to One or not.

Solution:

Domain = {1, -1, 2, -2}, let’s put the elements of the domain in the function

f(1) = 12 = 1

f(-1) = (-1)2 = 1

f(2) = (2)2 = 4

f(-2) = (-2)2 = 4

Thus, we can see that more than one element of the domain have similar image after mapping. So this is Many to One function.

Example 6: If f(x) = 2x + 1 is defined on R:→ R. Then check whether the following function is Onto or not

Solution: 

For checking the function is Onto or not, Let’s first put the function f(x) equal to y

f(x) = y

y = 2x + 1

y – 1 = 2x

x = (y – 1) / 2

Now put the value of x in the function f(x), we get,

f((y – 1) / 2) = 2 × [(y – 1) / 2] +1

Taking LCM 2, we get

= [2(y – 1) + 2] / 2

= (2y – 2 + 2) / 2

= y

Since we get back y after putting the value of x in the function. Hence the given function f(x) = 2x + 1 is Onto function.

Example 7: If f:N → N is defined by f(x) = 3x + 1. Then prove that function f(x) is Surjective.

Solution:

To prove that the function is Surjective or not, firstly we put the function equal to y. Then find out the value of x and then put that value in the function. So let’s start solving it.

Let f(x) = y

3x + 1 = y

3x = y – 1

x = (y – 1) / 3

Now put the value of x in the function f(x), we get

f((y – 1) / 3) = {3 (y – 1) / 3} + 1

= y – 1 + 1

= y

Since we get back y after putting the value of x in the function. Hence the given function f(x) = (3x + 1) is Onto function.

Example 8: If A = R – {3} and B = R – {1}. Consider the function f: A → B defined by f(x) = (x – 2)/(x – 3), for all x ∈ A. Then show that the function f is bijective.

Solution:

To show the function is bijective we have to prove the given function both One to One and Onto.

Let’s first check for One to One:

Let x1, x2 ∈  A such that f(x1) = f(x2

Then, (x1 – 2) / (x1 – 3) = (x2 – 2) / (x2 – 3)

(x1 – 2) ( x2 – 3) = (x2 – 2) (x1 – 3)

x1 . x2 – 3x1 – 2x1 + 6 = x1 . x2 – 3x2 -2x1 + 6

-3x1 – 2x2 = -3x2 – 2x1

-3( x1 – x2) + 2( x1 – x2) = 0

-( x1 – x2) = 0

x1 – x2  = 0 

⇒ x1 = x2

Thus, f(x1) = f(x2) ⇒ x1 = x2, ∀ x1, x2  ∈ A

So, the function is a One to One

Now let us check for Onto:

Let y ∈ B = R – {1} be any arbitrary element.

Then, f(x) = y

⇒ (x – 2) / (x – 3) = y

⇒ x – 2 = xy – 3y

⇒ x – xy = 2 – 3y

⇒ x(1 – y) = 2 – 3y

⇒ x =  (2 – 3y) / (1 – y) or x = (3y – 2) / (y – 1)

Now put the value of x in the function f(x) 

f((3y – 2) / (y – 1)) = { (3y – 2) / (y – 1) } – 2 / { (3y – 2) / (y – 1) – 3 }

= (3y – 2 – 2y + 2) / (3y – 2 – 3y + 3)

= y

Hence f(x) is Onto function. Since we proved both One to One and Onto this implies that the function is Bijective.

Example 9: A = {1, 2, 3, 4}, B = {a, b, c, d} then the function is defined as f= {(1, a), (2, b), (3, c), (4, d)}. Check whether the function is One to One Onto or not.

Solution: 

To check whether the function is One to One Onto or not. We have to check for both one by one. 

Let’s check for One to One:

As we know the condition for One to One that all the elements of the domain are having a single image in the codomain. As we see in the mapping that all the elements of set A are mapped with set B and each having a single image after mapping. 

So the function is One to One.

Now let’s check for Onto:

As we know the condition for the function to be Onto is that, Range = Codomain means all the elements of codomain are mapped with domain elements, in this case, codomain will equal to the domain. As we see in the mapping that the condition of the function to be Onto is satisfied. 

So the function is Onto. 

Since we had proved that the function is both One to One and Onto. 

Hence function is One to One Onto (Bijective).

Example 10: A = {1, 2, 3, 4}, B = {a, b, c, d}. The function is defined as f= {(1, a), (2, b), (3, c), (4, c)}. Check whether the function is Many to One Into or not.

Solution:

To check the function is Many to One Into or not. We have to check for both one by one.

Let’s first check for Many to One function:

As we know the condition for Many to One function is that more than one element of domain should have more same image in codomain. From the above mapping we can see that the elements of A {3, 4 } are having same image in B { c }, so the function is Many to One.

Now let’s check for Into function:

As we know the condition for Into function is that the Range of function should be the subset of codomain and also not equal to codomain. Let’s check both the conditions are satisfied or not.

  • Range of function = {a, b, c}
  • Codomain of function = {a, b, c, d}

Range of function ≠ Codomain of function

As we check that the range of function is not equal to codomain of the function. Hence we can say that the function is Into function. As we prove that the function is Many to One and Into. 

Hence the function is Many to One Into.

FAQs on Types of Function

What is domain and codomain of a function?

A domain of a function is defined as the set of values for which the function is defined. The function exist inside its domain. A codomain of a function is defined as the set of all possible output values f that function.

Define a function.

A function is defined as a relation between a set of values where for each input we have only one output.

Write the ways in which a function is represented.

A function is represented as y = f(x) where, x is the input value and f(x) is the output value.

How to Solve Cubic Functions?

The general form of cubic function is f(x) = ax3 + bx2 + cx +d, and if f(a) = 0, then x-a is the factor of this cubic function.

How do you prove that a Function is Onto?

In an onto function range is equal to co-domain, so any function is onto only when its range is equal to its codomain.

Chapter 1: Relations and Functions

CBSE Class 12 Maths Notes: Chapter Wise Notes PDF. Mathematics is an important subject in CBSE Class 12th Board Exam. There is a common misunderstanding among students that Math is a complex subject. If students will plan their preparation and revision in right direction, they can score well in Mathematics. For this Purpose, We have curated the Chapter Relations and Functions.  

  • Types of Functions-Functions are defined as the relations which give a particular output for a particular input value. A function has a domain and codomain (range). f(x) usually denotes a function where x is the input of the function. In general, a function is written as y = f(x).
  • Composite functions – Relations and functionsLet f : A->B and g : B->C be two functions. Then the composition of f and g, denoted by g o f, is defined as the function g o f : A->C given by g o f (x) = g{f(x)}, ∀ x ∈ A. Clearly, dom(g o f) = dom(f). Also, g o f is defined only when range(f) is a subset of dom(g).
  • Invertible Functions-As the name suggests Invertible means “inverse”, and Invertible function means the inverse of the function. Invertible functions, in the most general sense, are functions that “reverse” each other. For example, if f takes a to b, then the inverse, f-1, must take b to a.
  • Composition of Functions-Composition of Function is the process or operation which combines two or more functions together into a single function. We define functions as the set of operations that operate on a set of values and give the desired output.
  • Inverse Functions | Definition, Condition for Inverse and ExamplesInverse Functions are an important concept in mathematics. An inverse function basically reverses the effect of the original function. If you apply a function to a number and then apply its inverse, you get back the original number.
  • Verifying Inverse Functions by Composition-A function can be seen as a mathematical formula or a machine that throws output when an input is given. The output is usually some processed version of the input. Function’s inverses can be seen as the operations which give us the input back on giving them the output.

Er. Neeraj K.Anand is a freelance mentor and writer who specializes in Engineering & Science subjects. Neeraj Anand received a B.Tech degree in Electronics and Communication Engineering from N.I.T Warangal & M.Tech Post Graduation from IETE, New Delhi. He has over 30 years of teaching experience and serves as the Head of Department of ANAND CLASSES. He concentrated all his energy and experiences in academics and subsequently grew up as one of the best mentors in the country for students aspiring for success in competitive examinations. In parallel, he started a Technical Publication "ANAND TECHNICAL PUBLISHERS" in 2002 and Educational Newspaper "NATIONAL EDUCATION NEWS" in 2014 at Jalandhar. Now he is a Director of leading publication "ANAND TECHNICAL PUBLISHERS", "ANAND CLASSES" and "NATIONAL EDUCATION NEWS". He has published more than hundred books in the field of Physics, Mathematics, Computers and Information Technology. Besides this he has written many books to help students prepare for IIT-JEE and AIPMT entrance exams. He is an executive member of the IEEE (Institute of Electrical & Electronics Engineers. USA) and honorary member of many Indian scientific societies such as Institution of Electronics & Telecommunication Engineers, Aeronautical Society of India, Bioinformatics Institute of India, Institution of Engineers. He has got award from American Biographical Institute Board of International Research in the year 2005.

CBSE Class 12 Maths Syllabus 2025-26 with Marks Distribution

The table below shows the marks weightage along with the number of periods required for teaching. The Maths theory paper is of 80 marks, and the internal assessment is of 20 marks which totally comes out to be 100 marks.

CBSE Class 12 Maths Syllabus And Marks Distribution 2023-24

Max Marks: 80

No.UnitsMarks
I.Relations and Functions08
II.Algebra10
III.Calculus35
IV.Vectors and Three – Dimensional Geometry14
V.Linear Programming05
VI.Probability08
Total Theory80
Internal Assessment20
Grand Total100

Unit-I: Relations and Functions

1. Relations and Functions

Types of relations: reflexive, symmetric, transitive and equivalence relations. One to one and onto functions.

2. Inverse Trigonometric Functions

Definition, range, domain, principal value branch. Graphs of inverse trigonometric functions.

Unit-II: Algebra

1. Matrices

Concept, notation, order, equality, types of matrices, zero and identity matrix, transpose of a matrix, symmetric and skew symmetric matrices. Operations on matrices: Addition and multiplication and multiplication with a scalar. Simple properties of addition, multiplication and scalar multiplication. Noncommutativity of multiplication of matrices and existence of non-zero matrices whose product is the zero matrix (restrict to square matrices of order 2). Invertible matrices and proof of the uniqueness of inverse, if it exists; (Here all matrices will have real entries).

2. Determinants

Determinant of a square matrix (up to 3 x 3 matrices), minors, co-factors and applications of determinants in finding the area of a triangle. Adjoint and inverse of a square matrix. Consistency, inconsistency and number of solutions of system of linear equations by examples, solving system of linear equations in two or three variables (having unique solution) using inverse of a matrix.

Unit-III: Calculus

1. Continuity and Differentiability

Continuity and differentiability, derivative of composite functions, chain rule, derivative of inverse trigonometric functions like sin-1 x, cos-1 x and tan-1 x, derivative of implicit functions. Concept of exponential and logarithmic functions.
Derivatives of logarithmic and exponential functions. Logarithmic differentiation, derivative of functions expressed in parametric forms. Second order derivatives.

2. Applications of Derivatives

Applications of derivatives: rate of change of quantities, increasing/decreasing functions, maxima and minima (first derivative test motivated geometrically and second derivative test given as a provable tool). Simple problems (that illustrate basic principles and understanding of the subject as well as real-life situations).

3. Integrals 

Integration as inverse process of differentiation. Integration of a variety of functions by substitution, by partial fractions and by parts, Evaluation of simple integrals of the following types and problems based on them.

Fundamental Theorem of Calculus (without proof). Basic properties of definite integrals and evaluation of definite integrals.

4. Applications of the Integrals

Applications in finding the area under simple curves, especially lines, circles/ parabolas/ellipses (in standard form only)

5. Differential Equations

Definition, order and degree, general and particular solutions of a differential equation. Solution of differential equations by method of separation of variables, solutions of homogeneous differential equations of first order and first degree. Solutions of linear differential equation of the type:

dy/dx + py = q, where p and q are functions of x or constants.

dx/dy + px = q, where p and q are functions of y or constants.

Unit-IV: Vectors and Three-Dimensional Geometry

1. Vectors

Vectors and scalars, magnitude and direction of a vector. Direction cosines and direction ratios of a vector. Types of vectors (equal, unit, zero, parallel and collinear vectors), position vector of a point, negative of a vector, components of a vector, addition of vectors, multiplication of a vector by a scalar, position vector of a point dividing a line segment in a given ratio. Definition, Geometrical Interpretation, properties and application of scalar (dot) product of vectors, vector (cross) product of vectors.

2. Three – dimensional Geometry

Direction cosines and direction ratios of a line joining two points. Cartesian equation and vector equation of a line, skew lines, shortest distance between two lines. Angle between two lines.

Unit-V: Linear Programming

1. Linear Programming

Introduction, related terminology such as constraints, objective function, optimization, graphical method of solution for problems in two variables, feasible and infeasible regions (bounded or unbounded), feasible and infeasible solutions, optimal feasible solutions (up to three non-trivial constraints).

Unit-VI: Probability

1. Probability

Conditional probability, multiplication theorem on probability, independent events, total probability, Bayes’ theorem, Random variable and its probability distribution, mean of random variable.

Students can go through the CBSE Class 12 Syllabus to get the detailed syllabus of all subjects. Get access to interactive lessons and videos related to Maths and Science with ANAND CLASSES’S App/ Tablet.

Frequently Asked Questions on CBSE Class 12 Maths Syllabus 2025-26

Q1

Is Calculus an important chapter in the CBSE Class 12 Maths Syllabus?

Yes, Calculus is an important chapter in the CBSE Class 12 Maths Syllabus. It is for 35 marks which means that if a student is thorough with this chapter will be able to pass the final exam.

Q2

How many units are discussed in the CBSE Class 12 Maths Syllabus?

In the CBSE Class 12 Maths Syllabus, about 6 units are discussed, which contains a total of 13 chapters.

Q3

How many marks are allotted for internals in the CBSE Class 12 Maths syllabus?

About 20 marks are allotted for internals in the CBSE Class 12 Maths Syllabus. Students can score it with ease through constant practice.