Lanthanides Series(f-Block Elements)-Definition, Configuration, Properties, Lanthanide Contraction, Oxidation State, Chemical Reactivity, Formation of Coloured Ions

Victor Goldschmidt, a Norwegian mineralogist, coined the name lanthanide in 1925. The lanthanide family is made up of fifteen metallic elements (ranging from lanthanum to lutetium), all of which are f-block elements except for one. 

These elements’ valence electrons are found in the 4f orbital. Lanthanum, on the other hand, is a d-block element with a [Xe] 5d1 6s2 electronic configuration.

Lanthanides are the contemporary periodic table’s rare earth elements, with atomic numbers ranging from 58 to 71 after Lanthanum. Rare earth metals are so-called because these elements are extremely rare (3 × 10-4 % of the Earth’s crust). As lanthanide orthophosphates, they are accessible in ‘monazite’ sand. 

Lanthanides are extremely dense elements, with densities varying between 6.1 and 9.8 grams per cubic centimetre. These elements, like other metals, have extremely high melting points (varying from 800 to 1600 degrees Celsius) and extremely high boiling points (ranging from roughly 1200 to 3500 degrees Celsius). Lanthanides are all known to generate Ln3+ cations. Lanthanides are extremely dense metals with melting values that are even higher than those of the d-block elements. They combine with other metals to make alloys. These are the f block elements, often known as the inner transition metals. Inner transition elements/ions may have electrons in the s, d, and f- orbitals.

Electronic Configuration of f-block Elements

Lanthanides of the first f-block have a terminal electronic configuration of [Xe] 4f1-14 5d0-1 6s2. Promethium (Pm), with atomic number 61, is the sole synthetic radioactive element among the fourteen lanthanides. Because the energies of 4f and 5d electrons are so similar, the 5d orbital remains unoccupied and the electrons enter the 4f orbital.

Lanthanides are the contemporary periodic table’s rare earth elements, with atomic numbers ranging from 58 to 71 after Lanthanum. Rare earth metals are so-called because these elements are extremely rare (3 × 10-4 % of the Earth’s crust). As lanthanide orthophosphates, they are accessible in ‘monazite’ sand. 

Exceptions: Gadolinium, Gd (Z = 64), where the electron enters the 5d orbital due to the existence of a half-filled d-orbital, and lutetium (Z = 71), where the electron enters the 5d orbital due to the presence of a half-filled d-orbital.

Physical Properties

  1. Because density is the ratio of a substance’s mass to its volume, the density of d-block elements will be greater than that of s-block elements.
  2. Among the inner transition series, the density trend will be the inverse of atomic radii, i.e. density will grow as the atomic number increases over the period. They have a high density that ranges from 6.77 to 9.74 g cm-3. It rises as the atomic number rises.
  3. Lanthanides have a relatively high melting point, but there is no discernible pattern in their melting and boiling points.
  4. Magnetic Properties: Materials are classed as diamagnetic if they are repelled by a magnetic field and paramagnetic if they are attracted by one. Because of unpaired electrons in orbitals, lanthanide atoms/ions other than f0 and f14 are paramagnetic in nature. As a result, Lu3+, Yb2+, and Ce4+ are diamagnetic.

Properties of Lanthanide Series

  1. If we include the lanthanides and actinides series in the periodic table, the table will be excessively large. These two series are located at the bottom of the periodic table and are known as the 4f series (Lanthanods series) and the 5f series (Actinide series). The 4f and 5f series are referred to as inner transition elements.
  2. In terms of chemical and physical properties, all of the elements in the series are quite similar to lanthanum and each other.
  3. They have a lustrous sheen and a silvery look.
  4. Because they are delicate metals, they can even be sliced with a knife.
  5. Depending on their basicity, the elements have varying response tendencies. Some people react quickly, while others take their time.
  6. If lanthanides are contaminated with other metals or nonmetals, they might corrode or become brittle.
  7. They all mostly combine to generate a trivalent compound. They can also combine to generate divalent or tetravalent compounds.
  8. They have a magnetic pull.

Lanthanide Contraction

Because of the increasing nuclear charge and electrons entering the inner (n-2) f orbitals, the atomic size or ionic radius of tri positive lanthanide ions decreases steadily from La to Lu. Lanthanide contraction refers to the steady decrease in size with increasing atomic number. Its ramifications are as follows:

  1. Atomic size: The size of an atom in the third transition series is approximately identical to that of an atom in the second transition series. For example, the radius of Zr equals the radius of Hf, and the radius of Nb equals the radius of Ta, and so on.
  2. Difficulty in separating lanthanides: Because the ionic radii of Lanthanides differ only slightly, their chemical characteristics are comparable. This makes element separation in the pure state challenging.
  3. The effect of lanthanide size on hydroxide basic strength: As lanthanide size declines from La to Lu, the covalent character of the hydroxides rises, and hence their basic strength diminishes. As a result, La(OH)3 is more basic, while Lu(OH)3 is the least basic.
  4. Complex formation: The tendency to develop coordinates due to the smaller size but increased nuclear charge. Complexity rises from La3+ to Lu3+.
  5. From La to Lu, electronegativity increases.
  6. Ionization energy: Because the nuclear charge attracts electrons much more strongly, the ionisation energy of 5d elements is much higher than that of 4d and 3d elements. Except for Pt and Au, all elements in the 5d series have a filled s-shell. Elements ranging from Hafnium to Rhenium have the same Ionization Energy, and after Ionization Energy increases with the number of shared d-electrons, with Iridium and Gold having the highest Ionization Energy.
  7. Complex formation: Lanthanides with 3+ oxidation states have a greater charge to radius ratio. Lanthanides’ ability to form complexes is thus reduced when compared to d-block elements. Nonetheless, they form compounds with powerful chelating agents such as EDTA, -diketones, oxime, and so on. They are not capable of forming P-complexes.

Oxidation State of Lanthanide Series

The lanthanide series elements all have an oxidation state of +3. Previously, some metals (samarium, europium, and ytterbium) were thought to have +2 oxidation states. Further study of these metals and their compounds has revealed that all lanthanide metals have a +2 oxidation state in their solution complexes. A few metals in the lanthanide class exhibit +4 oxidation states on occasion. The high stability of empty, half-filled, or fully filled f-subshells is attributable to the metals’ unequal distribution of oxidation state. The oxidation state of lanthanides is affected by the stability of the f-subshell in such a way that the +4 oxidation state of cerium is preferred because it acquires a noble gas configuration, but it reverts to a +3 oxidation state and acts as a strong oxidant that can even oxidise water, albeit slowly.

Oxidation state in Aqueous Solution:Sm2+, Eu2+, and Yb2+ lose electrons in aqueous solution and oxidise, making them good reducing agents. Ce4+, Pr4+, and Tb4+, on the other hand, gain electrons and are good oxidising agents. Only oxides can achieve higher oxidation states (+4) of elements. As an example, consider the elements Pr, Nd, Tb, and Dy.

Chemical Reactivity of Lanthanide Series

The reactivity of all lanthanides is similar, however it is larger than that of the transition elements. This is owing to the outer 5s, 5p, and 5d orbitals protecting unpaired electrons from the inner 4f-orbital. Except for CeO2, which interacts with hydrogen to generate solid hydrides at 300-400 C, the oxides of M2O3 are easily tarnished with oxygen. Water breaks down hydrides. Heat the metal with halogen or the oxide with ammonium halide to produce halides. Fluorides are insoluble, but chlorides are deliquescent. Nitrates, acetates, and sulphates are soluble in water, but carbonate, phosphate, chromates, and oxalates are not.

Formation of Coloured Ions of Lanthanide Series

Lanthanides ions, like d-block elements, can have electrons in f-orbitals as well as empty orbitals. When a frequency of light is absorbed, the light is transmitted as a complementary colour to the absorbed frequency. Ions in the inner transition zone can absorb visible frequency and utilise it for f-f electron transitions and visible colour. The colour of several lanthanide metals is silver-white. Lanthanide ions with an oxidation state of +3 appear coloured in both solid and aqueous solutions.

Sample Questions (FAQs)

Question 1: What are lanthanide series? The lanthanide series has how many elements?

Answer:

The lanthanide series refers to a chemical element in row 6 between groups 3 and 4 of a periodic table. The lanthanide family consists of 15 chemical elements with atomic numbers ranging from 57 to 71.

Question 2: What is lanthanide contraction?

Answer:

Because of the growing nuclear charge and electrons entering the inner (n-2) f orbital, the ionic radii or atomic size of tripositive lanthanide ions decrease continuously from La to Lu. Lanthanides compress as their size gradually decreases with increasing atomic number.

Question 3: What are ceramic applications of lanthanides?

Answer:

Ce(III), Ce(IV) oxides are employed in glass polishing powders, whereas Nd and Pr oxides are widely used in glass colouring and the fabrication of standard light filters.

Question 4: Why is separation of lanthanides elements difficult in the pure state?

Answer:

Because there is only a slight difference in the ionic radii of the Lanthanides and their chemical characteristics are the same, separation of lanthanides elements in the pure state is challenging.

Question 5: What is the effect on the basic strength of hydroxides in lanthanides?

Answer:

The basic strength of lanthanides decreases as their size decreases from La to Lu and the covalent nature of the hydroxides increases.

Er. Neeraj K.Anand is a freelance mentor and writer who specializes in Engineering & Science subjects. Neeraj Anand received a B.Tech degree in Electronics and Communication Engineering from N.I.T Warangal & M.Tech Post Graduation from IETE, New Delhi. He has over 30 years of teaching experience and serves as the Head of Department of ANAND CLASSES. He concentrated all his energy and experiences in academics and subsequently grew up as one of the best mentors in the country for students aspiring for success in competitive examinations. In parallel, he started a Technical Publication "ANAND TECHNICAL PUBLISHERS" in 2002 and Educational Newspaper "NATIONAL EDUCATION NEWS" in 2014 at Jalandhar. Now he is a Director of leading publication "ANAND TECHNICAL PUBLISHERS", "ANAND CLASSES" and "NATIONAL EDUCATION NEWS". He has published more than hundred books in the field of Physics, Mathematics, Computers and Information Technology. Besides this he has written many books to help students prepare for IIT-JEE and AIPMT entrance exams. He is an executive member of the IEEE (Institute of Electrical & Electronics Engineers. USA) and honorary member of many Indian scientific societies such as Institution of Electronics & Telecommunication Engineers, Aeronautical Society of India, Bioinformatics Institute of India, Institution of Engineers. He has got award from American Biographical Institute Board of International Research in the year 2005.

CBSE Class 12 Chemistry Syllabus Download PDF

Below is the CBSE Class 12 Syllabus along with the marking scheme and time duration of the Chemistry exam.

S.NoTitleNo. of PeriodsMarks
1Solutions107
2Electrochemistry129
3Chemical Kinetics107
4d -and f -Block Elements127
5Coordination Compounds127
6Haloalkanes and Haloarenes106
7Alcohols, Phenols and Ethers106
8Aldehydes, Ketones and Carboxylic Acids108
9Amines106
10Biomolecules127
Total70

CBSE Class 12 Chemistry Practical Syllabus along with Marking Scheme

The following is a breakdown of the marks for practical, project work, class records, and viva. The total number of marks for all parts is 15. The marks for both terms are provided in the table below.

Evaluation Scheme for ExaminationMarks
Volumetric Analysis08
Salt Analysis08
Content-Based Experiment06
Project Work and Viva04
Class record and Viva04
Total30

CBSE Class 12 Chemistry Syllabus (Chapter-wise)

Unit -1: Solutions

  • Raoult's law.
  • Colligative properties - relative lowering of vapour pressure, elevation of boiling point, depression of freezing point, osmotic pressure, determination of molecular masses using colligative properties, abnormal molecular mass.
  • Solutions, Types of solutions, expression of concentration of solutions of solids in liquids, solubility of gases in liquids, solid solutions.
  • Van't Hoff factor.

Unit -2: Electrochemistry

  • Redox reactions, EMF of a cell, standard electrode potential
  • Nernst equation and its application to chemical cells
  • Relation between Gibbs energy change and EMF of a cell
  • Kohlrausch's Law
  • Electrolysis and law of electrolysis (elementary idea)
  • Dry cell-electrolytic cells and Galvanic cells
  • Conductance in electrolytic solutions, specific and molar conductivity, variations of conductivity with concentration.
  • Lead accumulator
  • Fuel cells

Unit -3: Chemical Kinetics

  • Rate of a reaction (Average and instantaneous)
  • Rate law and specific rate constant
  • Integrated rate equations and half-life (only for zerfirst-order order reactions)
  • Concept of collision theory (elementary idea, no mathematical treatment)
  • Factors affecting rate of reaction: concentration, temperature, catalyst;
  • Order and molecularity of a reaction
  • Activation energy
  • Arrhenius equation

Unit -4: d and f Block Elements  

  • Lanthanoids- Electronic configuration, oxidation states, chemical reactivity and lanthanoid contraction and its consequences.
  • Actinoids- Electronic configuration, oxidation states and comparison with lanthanoids.
  • General introduction, electronic configuration, occurrence and characteristics of transition metals, general trends in properties of the first-row transition metals – metallic character, ionization enthalpy, oxidation states, ionic radii, color, catalytic property, magnetic properties, interstitial compounds, alloy formation, preparation and properties of K2Cr2O7 and KMnO4.

Unit -5: Coordination Compounds  

  • Coordination compounds - Introduction, ligands, coordination number, color, magnetic properties and shapes
  • The importance of coordination compounds (in qualitative analysis, extraction of metals and biological system).
  • IUPAC nomenclature of mononuclear coordination compounds.
  • Bonding
  • Werner's theory, VBT, and CFT; structure and stereoisomerism

Unit -6: Haloalkanes and Haloarenes  

  • Haloarenes: Nature of C–X bond, substitution reactions (Directive influence of halogen in monosubstituted compounds only). Uses and environmental effects of - dichloromethane, trichloro methane, tetrachloromethane, iodoform, freons, DDT.
  • Haloalkanes: Nomenclature, nature of C–X bond, physical and chemical properties, optical rotation mechanism of substitution reactions.

Unit -7: Alcohols, Phenols and Ethers   

  • Phenols: Nomenclature, methods of preparation, physical and chemical properties, acidic nature of phenol, electrophilic substitution reactions, uses of phenols.
  • Ethers: Nomenclature, methods of preparation, physical and chemical properties, uses.
  • Alcohols: Nomenclature, methods of preparation, physical and chemical properties (of primary alcohols only), identification of primary, secondary and tertiary alcohols, mechanism of dehydration, and uses with special reference to methanol and ethanol.

Unit -8: Aldehydes, Ketones and Carboxylic Acids   

  • Carboxylic Acids: Nomenclature, acidic nature, methods of preparation, physical and chemical properties; uses.
  • Aldehydes and Ketones: Nomenclature, nature of carbonyl group, methods of preparation, physical and chemical properties, mechanism of nucleophilic addition, the reactivity of alpha hydrogen in aldehydes, uses.

Unit -9: Amines    

  • Diazonium salts: Preparation, chemical reactions and importance in synthetic organic chemistry.
  • Amines: Nomenclature, classification, structure, methods of preparation, physical and chemical properties, uses, and identification of primary, secondary and tertiary amines.

Unit -10: Biomolecules     

  • Proteins -Elementary idea of - amino acids, peptide bond, polypeptides, proteins, structure of proteins - primary, secondary, tertiary structure and quaternary structures (qualitative idea only), denaturation of proteins; enzymes. Hormones - Elementary idea excluding structure.
  • Vitamins - Classification and functions.
  • Carbohydrates - Classification (aldoses and ketoses), monosaccharides (glucose and fructose), D-L configuration oligosaccharides (sucrose, lactose, maltose), polysaccharides (starch, cellulose, glycogen); Importance of carbohydrates.
  • Nucleic Acids: DNA and RNA.

The syllabus is divided into three parts: Part A, Part B, and Part C. Part A consist of Basic Concepts of Chemistry, which covers topics such as atomic structure, chemical bonding, states of matter, and thermochemistry. Part B consists of Topics in Physical Chemistry, which includes topics such as chemical kinetics, equilibrium, and electrochemistry. Part C consists of Topics in Organic Chemistry, which covers topics such as alkanes, alkenes, alkynes, and aromatic compounds.

Basic Concepts of Chemistry:

  • Atomic structure: This section covers the fundamental concepts of atomic structure, including the electronic configuration of atoms, the Bohr model of the atom, and the wave nature of matter.
  • Chemical bonding: This section covers the different types of chemical bonds, including ionic, covalent, and metallic bonds, as well as the concept of hybridization.
  • States of the matter: This section covers the three states of matter - solid, liquid, and gas - and the factors that influence their properties.
  • Thermochemistry: This section covers the principles of thermochemistry, including the laws of thermodynamics and the concept of enthalpy.

Chapters in Physical Chemistry:

  • Chemical kinetics: This section covers the study of the rate of chemical reactions and the factors that influence it, including the concentration of reactants, temperature, and the presence of catalysts.
  • Equilibrium: This section covers the principles of chemical equilibrium, including the concept of Le Chatelier's principle and the equilibrium constant.
  • Electrochemistry: This section covers the principles of electrochemistry, including the concept of half-cell reactions, galvanic cells, and electrolysis.

Chapters in Organic Chemistry:

  • Alkanes: This section covers the properties and reactions of alkanes, including their structure, isomerism, and combustion.
  • Alkenes: This section covers the properties and reactions of alkenes, including their structure, isomerism, and addition reactions.
  • Alkynes: This section covers the properties and reactions of alkynes, including their structure, isomerism, and addition reactions.
  • Aromatic compounds: This section covers the properties and reactions of aromatic compounds, including their structure, isomerism, and electrophilic substitution reactions.

In addition to the topics covered in the syllabus, the CBSE Class 12 Chemistry exam also tests students on their analytical and problem-solving skills, as well as their ability to apply the concepts learned in the classroom to real-world situations.

Students can also check out the Tips for the Class 12 Chemistry Exam. They can easily access the Class 12 study material in one place by visiting the CBSE Class 12 page at ANAND CLASSES (A School Of Competitions). Moreover, to get interactive lessons and study videos, download the ANAND CLASSES (A School Of Competitions) App.

Frequently Asked Questions on CBSE Class 12 Chemistry Syllabus

Q1

How many chapters are there in the CBSE Class 12 Chemistry as per the syllabus?

There are 10 chapters in the CBSE Class 12 Chemistry as per Syllabus. Students can learn all these chapters efficiently using the study materials provided at ANAND CLASSES (A School Of Competitions).

Q2

What is the marking scheme for CBSE Class 12 Chemistry practical exam according to the syllabus?

The marking scheme for CBSE Class 12 Chemistry practical exam, according to the syllabus, is 8 marks for volumetric analysis, 8 marks for salt analysis, 6 marks for the content-based experiment, 4 marks for the project and viva and 4 marks for class record and viva.

Q3

Which is the scoring chapter in Chemistry as per CBSE Class 12 syllabus?

The chapter Electrochemistry in Chemistry is the scoring chapter as per CBSE Class 12 syllabus.