Osmotic Pressure, Osmosis Definition, Formula, Examples, Difference between Osmosis and Diffusion, FAQs

A solution is a homogeneous mixture of two or more particles having particle sizes smaller than one nanometer. Sugar and salt solutions in water, as well as soda water, are common examples of solutions. In a solution, all of the components appear as a single phase. There is particle homogeneity, which means that the particles are evenly dispersed. This is why a full bottle of soft drink tastes the same.

The component that dissolves the other component is known as the solvent. Solute refers to the component(s) that are dissolved in the solvent (s). In general, the solvent is present in greater proportion than the solute. The solute amount is less than the solvent amount. Solutes and solvents can exist in every state of matter, including solids, liquids, and gases. A liquid solution is composed of a solid, liquid, or gas dissolved in a liquid solvent. Solid and gaseous solutions are represented by alloys and air, respectively.

Define Osmosis

Note: Osmosis is discovered and named by the French physiologist Henri Dutrochet. He also invented osmometer, a device used to measure osmotic pressure.

Define Osmotic Pressure

A solution is a homogeneous mixture of two or more particles having particle sizes smaller than one nanometer. Sugar and salt solutions in water, as well as soda water, are common examples of solutions. In a solution, all of the components appear as a single phase. There is particle homogeneity, which means that the particles are evenly dispersed. This is why a full bottle of soft drink tastes the same.

Osmotic Pressure Formula

The Dutch chemist Jacobus van’t Hoff proposed this link between a solution’s osmotic pressure and the molar concentration of its solute. which is as follows:

∏ = iCRT

Where,

is the osmotic pressure,

i is the van’t Hoff factor,

C is the molar concentration of the solute in the solution, (C=n/V; where n is the number of moles and V is the volume.)

R is the ideal gas constant,

and T is the temperature in Kelvin

It should be noted that this equation only applies to solutions that act like perfect solutions.

Reverse Osmosis

The minimal pressure required to stop the passage of the solvent across the semipermeable membrane is referred to as osmotic pressure. When a pressure greater than the osmotic pressure is applied to the solution side (the side with a high solute concentration), the solvent particles on the solution side move through the semipermeable membrane to the area with a low solute concentration. Reverse osmosis refers to the flow of the solvent through the semipermeable membrane in the opposite direction.

Application of Reverse Osmosis

  • Electronic component manufacturers require the finest quality water possible. Reverse osmosis is commonly used to remove the majority of contaminants from a water supply before it is introduced into a polishing ion exchange system. Reverse osmosis increases the life of the ion exchange beds while lowering the overall cost of producing huge volumes of high-quality water.
  • Depending on the nature of the chemical production process, the maker of chemicals requires varied grades of water. In some circumstances, reverse osmosis water will yield satisfactory product water on its own, and it is utilized as a pre-treatment when greater qualities are required.
  • In this business, reverse osmosis has been used successfully to not only purify water for use in plating solution makeup water and drag out baths but also to concentrate important plating metals in the waste stream for recycling in a closed-loop process.
  • On a small and large scale, reverse osmosis is widely utilized in the desalting sea or brackish water for potable consumption. Because of its low energy requirements, the technique is particularly appealing in this application.

Types of Osmosis

There are two types of Osmosis that take place in the cells of animals as well as plants, those are as follows:

Endosmosis

When a substance is immersed in a hypotonic solution, the solvent molecules migrate into the cell, creating turgidity (swollen) or deplasmolysis. This process is called Endosmosis.

Exosmosis

When a material is immersed in a hypertonic solution, the solvent molecules escape the cell, causing flaccidity or plasmolysis. This process is called Exosmosis.

Effect of Osmosis on Cells

In biological, systems osmosis is very essential as many biological membranes are semipermeable. For example in an animal cell, if surrounded by a hypertonic environment (outside the cell is higher water concentration) then due to osmosis water leaves the cell and the cell shrinks, opposite to it if surrounded by the hypotonic surroundings (outside the cell with lower water concentration) then water diffuses into cells and causes the cell to swell. Animal cells can only live if it is surrounded by an isotonic solution. The same effect of hypertonic and hypotonic solutions can be seen in plants cell.

A solution is a homogeneous mixture of two or more particles having particle sizes smaller than one nanometer. Sugar and salt solutions in water, as well as soda water, are common examples of solutions. In a solution, all of the components appear as a single phase. There is particle homogeneity, which means that the particles are evenly dispersed. This is why a full bottle of soft drink tastes the same.

Difference between Osmosis and Diffusion

Osmosis can seem like diffusion but there are a lot of differences between both which are as follows:

OsmosisDiffusion
It is only applicable to liquid media.It can be found in a variety of liquids, gases, and even solids.
A semipermeable membrane is required.Doesn’t require a semi-permeable membrane.
This is determined by the number of solute particles dissolved in the solvent.It is affected by the presence of other particles.
Water is required for particle mobility.The mobility of particles does not require the use of water.
Only the solvent molecules can diffuse.Solute and solvent molecules can both disperse.
Particles can only flow in one direction.The movement of particles occurs in all directions.
The entire process can be stopped or reversed by applying extra pressure to the solution side.This process cannot be halted or reversed.
This only happens amongst solutions that are similar in nature.Occurs between solutions that are similar and solutions that are dissimilar.
Only water or another solvent goes from a high-energy or concentration zone to low energy or concentration region.Any substance can migrate from a location of high energy or concentration to a region of low energy or concentration.

Significance of Osmosis

  • Nutritional supply and the discharge of metabolic waste products are both affected by osmosis.
  • It is in charge of absorbing water from the earth and transporting it to the plant’s higher portions via the xylem.
  • It maintains the equilibrium of water and intercellular fluid levels in a living organism’s interior environment.
  • It keeps the turgidity of cells.
  • It is the method by which plants maintain their water content in the face of continual water loss owing to transpiration.
  • This process regulates water transport from cell to cell.
  • Osmosis causes cell turgor, which regulates plant and plant component mobility.
  • Osmosis is also responsible for the dehiscence of fruits and sporangia.
  • Higher osmotic pressure protects plants against drought damage.

Examples of Osmosis

There are a lot of examples of Osmosis in nature as Osmosis is a very essential part of life. Some of the examples are as follows:

  • The process through which water is absorbed from the soil is also because of osmosis as water rushes into the roots because plant roots have a higher concentration than soil.
  • Osmosis also impacts the plant’s defense cells. The guard cells enlarge and the stomata open as water enters the plant cells.
  • A freshwater or saltwater fish dies as a result of water entering or departing the animal’s cells when placed in water with different salt concentrations.
  • Humans suffering from cholera are also affected by osmosis as the overpopulation of bacteria in the intestines reverses the absorption flow and prevents the intestines from absorbing water, resulting in dehydration.

Solved Examples of Osmotic Pressure

Question 1: Calculate the osmotic pressure of 5% solution of cane sugar (sucrose) at the temperature of 15° Celsius.

Solution:

m = molecular mass of sucrose (C12H22O11) = 342 amu  

w = 5g 

V = 100 mL = 0.1 litre  

we know, R = 0.0821 L⋅atm⋅K−1⋅mol−1,  

T = (15 + 273) = 288 K  

and as glucose is the non-ionic compound and doesn’t dissociate to give any ions in the solution, it’s van’t Hoff factor is 1.

Rearranging ∏ = iCRT, we get ∏V = w/m ⋅RT,  

∏ = 5/342×1/0.1 × 0.082 × 288 = 3.453 atm

Question 2: The solution containing 10 g of an organic non-ionic compound per liter showed an osmotic pressure of 1.16 atmosphere at 0° Celsius. Calculate the molecular mass of the compound (S = 0.0821 L⋅atm⋅K−1⋅mol−1

Solution:

As compound is non-ionic, it’s van’t Hoff factor is 1.

Applying the equation  m = w/∏V ⋅RT  

Given w = 10 g, P = 1.18 atm, V = 1 litre, S = 0.0821 L⋅atm⋅K−1⋅mol−1 and T = 273 K.  

m = 10/1.18×1 × 0.0821 × 273 = 189.94 amu  

FAQs on Osmosis and Osmotic Pressure

Question 1: What is Osmosis?

Solution:

Osmosis is the process of moving solvent molecules from a low solute concentration area to a high solute concentration area through a semipermeable membrane. Some examples of osmosis are the swelling of resins when left in water for some time, the pruning of fingers after putting them in water for some time, etc. 

Question 2: What is reverse osmosis?

Solution:

Reverse osmosis is a natural phenomena that takes place in the opposite direction of natural osmosis. This type of osmosis is used to remove the bulk of pollutants from water by forcing the water through a semi-permeable membrane under pressure.

Question 3: How many types of Osmotic solutions?

Solution:

There are three kinds of osmotic solutions:  isotonic, hypertonic and hypotonic.

A pair of two solutions with same osmotic pressure at a given temperature are called isotonic solutions.

For two solutions, one with higher osmotic pressure and one with lower osmotic pressure compared to each other, solution with higher osmotic pressure is hypertonic solution with respect to the other solution and solution with lower osmotic pressure is called hypotonic solution with respect to the other solution.

Question 4: How is osmosis different from diffusion?

Solution:

Osmosis is the movement of solvents through a semi-permeable membrane from a low-solute-concentration region to a high-solute-concentration region. Diffusion, on the other hand, does not require a semi-permeable membrane to occur, as molecules migrate from a location of higher concentration to a region of lower concentration.

Question 5: What is a semipermeable membrane?

Solution:

The semipermeable membrane is a type of biological membrane that allows some molecules or ions to pass through it and blocks the remaining of them.

Er. Neeraj K.Anand is a freelance mentor and writer who specializes in Engineering & Science subjects. Neeraj Anand received a B.Tech degree in Electronics and Communication Engineering from N.I.T Warangal & M.Tech Post Graduation from IETE, New Delhi. He has over 30 years of teaching experience and serves as the Head of Department of ANAND CLASSES. He concentrated all his energy and experiences in academics and subsequently grew up as one of the best mentors in the country for students aspiring for success in competitive examinations. In parallel, he started a Technical Publication "ANAND TECHNICAL PUBLISHERS" in 2002 and Educational Newspaper "NATIONAL EDUCATION NEWS" in 2014 at Jalandhar. Now he is a Director of leading publication "ANAND TECHNICAL PUBLISHERS", "ANAND CLASSES" and "NATIONAL EDUCATION NEWS". He has published more than hundred books in the field of Physics, Mathematics, Computers and Information Technology. Besides this he has written many books to help students prepare for IIT-JEE and AIPMT entrance exams. He is an executive member of the IEEE (Institute of Electrical & Electronics Engineers. USA) and honorary member of many Indian scientific societies such as Institution of Electronics & Telecommunication Engineers, Aeronautical Society of India, Bioinformatics Institute of India, Institution of Engineers. He has got award from American Biographical Institute Board of International Research in the year 2005.

CBSE Class 12 Chemistry Syllabus Download PDF

Below is the CBSE Class 12 Syllabus along with the marking scheme and time duration of the Chemistry exam.

S.NoTitleNo. of PeriodsMarks
1Solutions107
2Electrochemistry129
3Chemical Kinetics107
4d -and f -Block Elements127
5Coordination Compounds127
6Haloalkanes and Haloarenes106
7Alcohols, Phenols and Ethers106
8Aldehydes, Ketones and Carboxylic Acids108
9Amines106
10Biomolecules127
Total70

CBSE Class 12 Chemistry Practical Syllabus along with Marking Scheme

The following is a breakdown of the marks for practical, project work, class records, and viva. The total number of marks for all parts is 15. The marks for both terms are provided in the table below.

Evaluation Scheme for ExaminationMarks
Volumetric Analysis08
Salt Analysis08
Content-Based Experiment06
Project Work and Viva04
Class record and Viva04
Total30

CBSE Class 12 Chemistry Syllabus (Chapter-wise)

Unit -1: Solutions

  • Raoult's law.
  • Colligative properties - relative lowering of vapour pressure, elevation of boiling point, depression of freezing point, osmotic pressure, determination of molecular masses using colligative properties, abnormal molecular mass.
  • Solutions, Types of solutions, expression of concentration of solutions of solids in liquids, solubility of gases in liquids, solid solutions.
  • Van't Hoff factor.

Unit -2: Electrochemistry

  • Redox reactions, EMF of a cell, standard electrode potential
  • Nernst equation and its application to chemical cells
  • Relation between Gibbs energy change and EMF of a cell
  • Kohlrausch's Law
  • Electrolysis and law of electrolysis (elementary idea)
  • Dry cell-electrolytic cells and Galvanic cells
  • Conductance in electrolytic solutions, specific and molar conductivity, variations of conductivity with concentration.
  • Lead accumulator
  • Fuel cells

Unit -3: Chemical Kinetics

  • Rate of a reaction (Average and instantaneous)
  • Rate law and specific rate constant
  • Integrated rate equations and half-life (only for zerfirst-order order reactions)
  • Concept of collision theory (elementary idea, no mathematical treatment)
  • Factors affecting rate of reaction: concentration, temperature, catalyst;
  • Order and molecularity of a reaction
  • Activation energy
  • Arrhenius equation

Unit -4: d and f Block Elements  

  • Lanthanoids- Electronic configuration, oxidation states, chemical reactivity and lanthanoid contraction and its consequences.
  • Actinoids- Electronic configuration, oxidation states and comparison with lanthanoids.
  • General introduction, electronic configuration, occurrence and characteristics of transition metals, general trends in properties of the first-row transition metals – metallic character, ionization enthalpy, oxidation states, ionic radii, color, catalytic property, magnetic properties, interstitial compounds, alloy formation, preparation and properties of K2Cr2O7 and KMnO4.

Unit -5: Coordination Compounds  

  • Coordination compounds - Introduction, ligands, coordination number, color, magnetic properties and shapes
  • The importance of coordination compounds (in qualitative analysis, extraction of metals and biological system).
  • IUPAC nomenclature of mononuclear coordination compounds.
  • Bonding
  • Werner's theory, VBT, and CFT; structure and stereoisomerism

Unit -6: Haloalkanes and Haloarenes  

  • Haloarenes: Nature of C–X bond, substitution reactions (Directive influence of halogen in monosubstituted compounds only). Uses and environmental effects of - dichloromethane, trichloro methane, tetrachloromethane, iodoform, freons, DDT.
  • Haloalkanes: Nomenclature, nature of C–X bond, physical and chemical properties, optical rotation mechanism of substitution reactions.

Unit -7: Alcohols, Phenols and Ethers   

  • Phenols: Nomenclature, methods of preparation, physical and chemical properties, acidic nature of phenol, electrophilic substitution reactions, uses of phenols.
  • Ethers: Nomenclature, methods of preparation, physical and chemical properties, uses.
  • Alcohols: Nomenclature, methods of preparation, physical and chemical properties (of primary alcohols only), identification of primary, secondary and tertiary alcohols, mechanism of dehydration, and uses with special reference to methanol and ethanol.

Unit -8: Aldehydes, Ketones and Carboxylic Acids   

  • Carboxylic Acids: Nomenclature, acidic nature, methods of preparation, physical and chemical properties; uses.
  • Aldehydes and Ketones: Nomenclature, nature of carbonyl group, methods of preparation, physical and chemical properties, mechanism of nucleophilic addition, the reactivity of alpha hydrogen in aldehydes, uses.

Unit -9: Amines    

  • Diazonium salts: Preparation, chemical reactions and importance in synthetic organic chemistry.
  • Amines: Nomenclature, classification, structure, methods of preparation, physical and chemical properties, uses, and identification of primary, secondary and tertiary amines.

Unit -10: Biomolecules     

  • Proteins -Elementary idea of - amino acids, peptide bond, polypeptides, proteins, structure of proteins - primary, secondary, tertiary structure and quaternary structures (qualitative idea only), denaturation of proteins; enzymes. Hormones - Elementary idea excluding structure.
  • Vitamins - Classification and functions.
  • Carbohydrates - Classification (aldoses and ketoses), monosaccharides (glucose and fructose), D-L configuration oligosaccharides (sucrose, lactose, maltose), polysaccharides (starch, cellulose, glycogen); Importance of carbohydrates.
  • Nucleic Acids: DNA and RNA.

The syllabus is divided into three parts: Part A, Part B, and Part C. Part A consist of Basic Concepts of Chemistry, which covers topics such as atomic structure, chemical bonding, states of matter, and thermochemistry. Part B consists of Topics in Physical Chemistry, which includes topics such as chemical kinetics, equilibrium, and electrochemistry. Part C consists of Topics in Organic Chemistry, which covers topics such as alkanes, alkenes, alkynes, and aromatic compounds.

Basic Concepts of Chemistry:

  • Atomic structure: This section covers the fundamental concepts of atomic structure, including the electronic configuration of atoms, the Bohr model of the atom, and the wave nature of matter.
  • Chemical bonding: This section covers the different types of chemical bonds, including ionic, covalent, and metallic bonds, as well as the concept of hybridization.
  • States of the matter: This section covers the three states of matter - solid, liquid, and gas - and the factors that influence their properties.
  • Thermochemistry: This section covers the principles of thermochemistry, including the laws of thermodynamics and the concept of enthalpy.

Chapters in Physical Chemistry:

  • Chemical kinetics: This section covers the study of the rate of chemical reactions and the factors that influence it, including the concentration of reactants, temperature, and the presence of catalysts.
  • Equilibrium: This section covers the principles of chemical equilibrium, including the concept of Le Chatelier's principle and the equilibrium constant.
  • Electrochemistry: This section covers the principles of electrochemistry, including the concept of half-cell reactions, galvanic cells, and electrolysis.

Chapters in Organic Chemistry:

  • Alkanes: This section covers the properties and reactions of alkanes, including their structure, isomerism, and combustion.
  • Alkenes: This section covers the properties and reactions of alkenes, including their structure, isomerism, and addition reactions.
  • Alkynes: This section covers the properties and reactions of alkynes, including their structure, isomerism, and addition reactions.
  • Aromatic compounds: This section covers the properties and reactions of aromatic compounds, including their structure, isomerism, and electrophilic substitution reactions.

In addition to the topics covered in the syllabus, the CBSE Class 12 Chemistry exam also tests students on their analytical and problem-solving skills, as well as their ability to apply the concepts learned in the classroom to real-world situations.

Students can also check out the Tips for the Class 12 Chemistry Exam. They can easily access the Class 12 study material in one place by visiting the CBSE Class 12 page at ANAND CLASSES (A School Of Competitions). Moreover, to get interactive lessons and study videos, download the ANAND CLASSES (A School Of Competitions) App.

Frequently Asked Questions on CBSE Class 12 Chemistry Syllabus

Q1

How many chapters are there in the CBSE Class 12 Chemistry as per the syllabus?

There are 10 chapters in the CBSE Class 12 Chemistry as per Syllabus. Students can learn all these chapters efficiently using the study materials provided at ANAND CLASSES (A School Of Competitions).

Q2

What is the marking scheme for CBSE Class 12 Chemistry practical exam according to the syllabus?

The marking scheme for CBSE Class 12 Chemistry practical exam, according to the syllabus, is 8 marks for volumetric analysis, 8 marks for salt analysis, 6 marks for the content-based experiment, 4 marks for the project and viva and 4 marks for class record and viva.

Q3

Which is the scoring chapter in Chemistry as per CBSE Class 12 syllabus?

The chapter Electrochemistry in Chemistry is the scoring chapter as per CBSE Class 12 syllabus.