The three basic states of matter are solid, liquid, and gaseous. All of the materials we come into contact with on a daily basis (from ice cream to chairs to water) are composed of matter.
On the basis of intermolecular forces and particle arrangement, matter can be classified into three states: solid, liquid, and gas. These three types of matter can be converted from one state to another by modifying certain environmental factors (increasing or decreasing pressure and temperature, for instance). By increasing the temperature, for example, ice can be transformed from a solid into liquid water.
What is Matter?
Matter is the substance that makes up everything in the physical universe. It is anything that has mass and occupies space. Matter is composed of tiny particles called atoms, which are the basic building blocks of all chemical elements. These atoms can combine to form molecules, which in turn can combine to create more complex substances.
Matter Definition
Matter is defined as anything that occupies space and has mass.
Atoms are the building blocks of all matter, consisting of protons, neutrons, and electrons. Chemical energy is a type of potential energy that holds together atoms and molecules. “Anything with mass and volume” is defined as matter (takes up space). It’s not difficult to show that most of the products we interact with on a daily basis have mass and take up space.
Three States of Matter
One of the distinct forms that the various phases of matter take are the condition of the matter. In everyday life, four states of matter can be found: solid, liquid, gas, and plasma. Many other states, such as Bose-Einstein condensate and neutron degenerate matter, are thought to exist only in extremely cold or dense matter. Other states, such as quark-gluon plasmas, are thought to be possible but are still considered theoretical for the time being.
The device’s states are either gaseous, liquid, or solid. Solids have a tight atomic bond and a high viscosity, which results in a rigid form. Most solids are crystalline in the sense that they have a three-dimensional periodic atomic structure; however, some solids (such as glass) lack this periodic arrangement and are therefore non-crystalline or amorphous.
The particles (ions, atoms, or molecules) in the solid are tightly packed together. The forces between the particles are so strong that the particles can only vibrate and cannot move freely. As a result, the solid has a consistent, definite shape and volume. Solids can only change shape by applying force to them as if they were broken or cut. A liquid is a nearly incompressible fluid that conforms to the shape of its container while maintaining a (nearly) constant volume regardless of pressure. If temperature and pressure remain constant, volume is defined. When a solid is heated past its melting point, it becomes liquid when the pressure exceeds the material’s triple point. The molecules in a gas have enough kinetic energy that the impact of intermolecular forces is small (or zero in the ideal gas) and the normal distance between adjacent molecules is much greater than the molecular size. The gas has no distinct shape or volume, but it completely fills the container in which it is contained.
Solids
One of the three fundamental states of matter is solid. A solid forms from a liquid or gas because the energy of atoms lowers as they take up a somewhat organised, three-dimensional structure.
Solids have characteristics that distinguish them from liquids and gases. All solids, for example, can withstand forces applied perpendicular or parallel to a surface (i.e., normal or shear loads, respectively). Such properties are determined by the properties of the atoms that make up the solid, how those atoms are arranged, and the forces that exist between them.
The properties of solids are:
One of the fundamental states of matter is solid state.
The rigidity of solids distinguishes them from liquids and gases.
Because of strong intermolecular forces, the molecules of solids are tightly packed and only oscillate around their mean positions.
Liquids and gases, on the other hand, have the property of fluidity and can easily flow.
Solids are states of matter that have a definite shape and volume as well as a rigid structure.
Solids have the least compressibility and thermal expansion of any material. Iron is an example
Liquids
The most visible physical properties of a liquid are volume retention and conformation to the shape of its container. When a liquid substance is poured into a vessel, it takes on the shape of the vessel and will remain inside as long as the substance is liquid. Furthermore, when a liquid is poured from one vessel to another, it retains its volume but not its shape (as long as there is no vaporization or temperature change).
These properties are useful for distinguishing between the liquid and solid states. Gases, for example, expand to fill their container to the point where their volume equals that of the container. When moving solids from one container to another, they keep their shape and volume.
Its properties are:
Because of weak intermolecular forces, the molecules in a liquid are tightly packed.
These forces are weaker in solids but stronger in gases.
Liquid molecules have a lot of space between them, which allows them to flow easily.
Liquids have a fixed volume and can easily take on the shape of a vessel.
The conversion of solids to liquids occurs when the temperature of the solids is raised to the point where the solids begin to melt.
In general, the density of liquids falls somewhere between the densities of solids and gases. Liquids have slightly higher compressibility and thermal expansion than solids.
Water is an example
Gases
Gases are remarkable in that they appear to have no structure at all. They have neither a definite size nor a definite shape, whereas ordinary solids have both a definite size and a definite shape, and liquids have a definite size, or volume, even though their shape adapts to that of the container in which they are placed.
Gases will completely fill any closed container; their properties are determined by the volume of the container rather than its shape. Its properties are:
The distances between molecules are large in this state of matter.
The intermolecular forces that exist between them are insignificant.
As a result, translatory, rotatory, and vibratory motions are prominent in gases.
Gases have no fixed shape or volume.
They are also very compressible and have a high thermal expansion.
Oxygen is an example.
Plasma
Plasma is a type of matter that is not commonly seen. Plasma is made up of particles with a very high kinetic energy. Electricity is used to ionise noble gases, resulting in glowing signs that are essentially plasma. Stars are superheated forms of plasma.
Bose-Einstein Condensates
Bose-Einstein condensates were discovered in 1995 as a result of technological advancements. Carl Wieman and Eric Cornell used magnets and lasers to cool a rubidium sample to a few degrees below absolute zero. The motion of the molecules becomes negligible at the specified temperature. As the kinetic energy decreases, the atoms no longer remain separate and begin to clump together. When the atoms combine, they form a super-atom. As light passes through a BEC, it slows down, allowing scientists to learn more about the nature of light as a wave and particle. BECs also exhibit superfluid properties, implying that they flow without friction.
Sample Questions on What is Matter
Question 1: Can Matter exist in two states at once?
Pressure has the ability to change the state of matter. Certain matters frequently vary, but often only occur in two states and necessitate human and technical assistance to progress through all three stages. Water is the only substance on the planet that can exist naturally in all three states: solid, liquid, and oil.
Question 2: Is light a matter?
Light is a type of energy, not matter. Atoms make up matter. Light, in fact, is electromagnetic radiation. A magnetic field is created when an electrical charge or electrons (electrical current) move, and a changing magnetic field creates an electrical or electrical field.
Question 3: How do we classify matter?
Physical and chemical properties can be used to classify matter. Matter is defined as something that occupies space and has mass. Solid, liquid, and gaseous are the three states of matter. The conversion of a material from one state of matter to another without changing its chemical composition is referred to as a physical transition.
Question 4: How is the matter made up?
Small particles make up matter as well. Atoms are the subatomic particles that make up matter. Atoms are invisible because they are so small. The majority of atoms combine to form the visible substance.
Question 5: Why are the 3 states of matter important?
Understanding the particle nature of matter is critical. Matter is made up of atoms and molecules, not “small solid bits” or small liquid drops. The physical properties of such atoms and molecules determine their state.
FAQs on What is Matter
1. What is Matter?
Matter is the substance that makes up everything in the physical universe. It is anything that has mass and occupies space. Matter is composed of tiny particles called atoms, which are the basic building blocks of all chemical elements.
2. What are the three states of Matter?
The three basic states of matter are :
3. What is Matter made up of?
Matter is made up of atoms, which are the fundamental building blocks of all chemical elements. Atoms are incredibly small and are composed of even smaller subatomic particles.
Neeraj Anand, Param Anand
Er. Neeraj K.Anand is a freelance mentor and writer who specializes in Engineering & Science subjects. Neeraj Anand received a B.Tech degree in Electronics and Communication Engineering from N.I.T Warangal & M.Tech Post Graduation from IETE, New Delhi. He has over 30 years of teaching experience and serves as the Head of Department of ANAND CLASSES. He concentrated all his energy and experiences in academics and subsequently grew up as one of the best mentors in the country for students aspiring for success in competitive examinations.
In parallel, he started a Technical Publication "ANAND TECHNICAL PUBLISHERS" in 2002 and Educational Newspaper "NATIONAL EDUCATION NEWS" in 2014 at Jalandhar. Now he is a Director of leading publication "ANAND TECHNICAL PUBLISHERS", "ANAND CLASSES" and "NATIONAL EDUCATION NEWS".
He has published more than hundred books in the field of Physics, Mathematics, Computers and Information Technology. Besides this he has written many books to help students prepare for IIT-JEE and AIPMT entrance exams. He is an executive member of the IEEE (Institute of Electrical & Electronics Engineers. USA) and honorary member of many Indian scientific societies such as Institution of Electronics & Telecommunication Engineers, Aeronautical Society of India, Bioinformatics Institute of India, Institution of Engineers. He has got award from American Biographical Institute Board of International Research in the year 2005.
CBSE Class 11 Chemistry Syllabus is a vast which needs a clear understanding of the concepts and topics. Knowing CBSE Class 11 Chemistry syllabus helps students to understand the course structure of Chemistry.
Unit-wise CBSE Class 11 Syllabus for Chemistry
Below is a list of detailed information on each unit for Class 11 Students.
UNIT I – Some Basic Concepts of Chemistry
General Introduction: Importance and scope of Chemistry.
Nature of matter, laws of chemical combination, Dalton’s atomic theory: concept of elements, atoms and molecules.
Atomic and molecular masses, mole concept and molar mass, percentage composition, empirical and molecular formula, chemical reactions, stoichiometry and calculations based on stoichiometry.
UNIT II – Structure of Atom
Discovery of Electron, Proton and Neutron, atomic number, isotopes and isobars. Thomson’s model and its limitations. Rutherford’s model and its limitations, Bohr’s model and its limitations, concept of shells and subshells, dual nature of matter and light, de Broglie’s relationship, Heisenberg uncertainty principle, concept of orbitals, quantum numbers, shapes of s, p and d orbitals, rules for filling electrons in orbitals – Aufbau principle, Pauli’s exclusion principle and Hund’s rule, electronic configuration of atoms, stability of half-filled and completely filled orbitals.
UNIT III – Classification of Elements and Periodicity in Properties
Significance of classification, brief history of the development of periodic table, modern periodic law and the present form of periodic table, periodic trends in properties of elements -atomic radii, ionic radii, inert gas radii, Ionization enthalpy, electron gain enthalpy, electronegativity, valency. Nomenclature of elements with atomic number greater than 100.
UNIT IV – Chemical Bonding and Molecular Structure
Valence electrons, ionic bond, covalent bond, bond parameters, Lewis structure, polar character of covalent bond, covalent character of ionic bond, valence bond theory, resonance, geometry of covalent molecules, VSEPR theory, concept of hybridization, involving s, p and d orbitals and shapes of some simple molecules, molecular orbital theory of homonuclear diatomic molecules(qualitative idea only), Hydrogen bond.
UNIT V – Chemical Thermodynamics
Concepts of System and types of systems, surroundings, work, heat, energy, extensive and intensive properties, state functions. First law of thermodynamics – internal energy and enthalpy, measurement of U and H, Hess’s law of constant heat summation, enthalpy of bond dissociation, combustion, formation, atomization, sublimation, phase transition, ionization, solution and dilution. Second law of Thermodynamics (brief introduction) Introduction of entropy as a state function, Gibb’s energy change for spontaneous and nonspontaneous processes. Third law of thermodynamics (brief introduction).
UNIT VI – Equilibrium
Equilibrium in physical and chemical processes, dynamic nature of equilibrium, law of mass action, equilibrium constant, factors affecting equilibrium – Le Chatelier’s principle, ionic equilibrium- ionization of acids and bases, strong and weak electrolytes, degree of ionization, ionization of poly basic acids, acid strength, concept of pH, hydrolysis of salts (elementary idea), buffer solution, Henderson Equation, solubility product, common ion effect (with illustrative examples).
UNIT VII – Redox Reactions
Concept of oxidation and reduction, redox reactions, oxidation number, balancing redox reactions, in terms of loss and gain of electrons and change in oxidation number, applications of redox reactions.
UNIT VIII – Organic Chemistry: Some basic Principles and Techniques
General introduction, classification and IUPAC nomenclature of organic compounds. Electronic displacements in a covalent bond: inductive effect, electromeric effect, resonance and hyper conjugation. Homolytic and heterolytic fission of a covalent bond: free radicals, carbocations, carbanions, electrophiles and nucleophiles, types of organic reactions.
UNIT IX – Hydrocarbons
Classification of Hydrocarbons Aliphatic Hydrocarbons: Alkanes – Nomenclature, isomerism, conformation (ethane only), physical properties, chemical reactions. Alkenes – Nomenclature, structure of double bond (ethene), geometrical isomerism, physical properties, methods of preparation, chemical reactions: addition of hydrogen, halogen, water, hydrogen halides (Markovnikov’s addition and peroxide effect), ozonolysis, oxidation, mechanism of electrophilic addition. Alkynes – Nomenclature, structure of triple bond (ethyne), physical properties, methods of preparation, chemical reactions: acidic character of alkynes, addition reaction of – hydrogen, halogens, hydrogen halides and water.
Aromatic Hydrocarbons:
Introduction, IUPAC nomenclature, benzene: resonance, aromaticity, chemical properties: mechanism of electrophilic substitution. Nitration, sulphonation, halogenation, Friedel Craft’s alkylation and acylation, directive influence of functional group in monosubstituted benzene. Carcinogenicity and toxicity.
To know the CBSE Syllabus for all the classes from 1 to 12, visit the Syllabus page of CBSE. Meanwhile, to get the Practical Syllabus of Class 11 Chemistry, read on to find out more about the syllabus and related information in this page.
CBSE Class 11 Chemistry Practical Syllabus with Marking Scheme
In Chemistry subject, practical also plays a vital role in improving their academic scores in the subject. The overall weightage of Chemistry practical mentioned in the CBSE Class 11 Chemistry syllabus is 30 marks. So, students must try their best to score well in practicals along with theory. It will help in increasing their overall academic score.
CBSE Class 11 Chemistry Practical Syllabus
The experiments will be conducted under the supervision of subject teacher. CBSE Chemistry Practicals is for 30 marks. This contribute to the overall practical marks for the subject.
The table below consists of evaluation scheme of practical exams.
Evaluation Scheme
Marks
Volumetric Analysis
08
Salt Analysis
08
Content Based Experiment
06
Project Work
04
Class record and viva
04
Total
30
CBSE Syllabus for Class 11 Chemistry Practical
Micro-chemical methods are available for several of the practical experiments. Wherever possible such techniques should be used.
A. Basic Laboratory Techniques 1. Cutting glass tube and glass rod 2. Bending a glass tube 3. Drawing out a glass jet 4. Boring a cork
B. Characterization and Purification of Chemical Substances 1. Determination of melting point of an organic compound. 2. Determination of boiling point of an organic compound. 3. Crystallization of impure sample of any one of the following: Alum, Copper Sulphate, Benzoic Acid.
C. Experiments based on pH
1. Any one of the following experiments:
Determination of pH of some solutions obtained from fruit juices, solution of known and varied concentrations of acids, bases and salts using pH paper or universal indicator.
Comparing the pH of solutions of strong and weak acids of same concentration.
Study the pH change in the titration of a strong base using universal indicator.
2. Study the pH change by common-ion in case of weak acids and weak bases.
D. Chemical Equilibrium One of the following experiments:
1. Study the shift in equilibrium between ferric ions and thiocyanate ions by increasing/decreasing the concentration of either of the ions. 2. Study the shift in equilibrium between [Co(H2O)6] 2+ and chloride ions by changing the concentration of either of the ions.
E. Quantitative Estimation i. Using a mechanical balance/electronic balance. ii. Preparation of standard solution of Oxalic acid. iii. Determination of strength of a given solution of Sodium hydroxide by titrating it against standard solution of Oxalic acid. iv. Preparation of standard solution of Sodium carbonate. v. Determination of strength of a given solution of hydrochloric acid by titrating it against standard Sodium Carbonatesolution.
F. Qualitative Analysis 1) Determination of one anion and one cation in a given salt Cations‐ Pb2+, Cu2+, As3+, Al3+, Fe3+, Mn2+, Ni2+, Zn2+, Co2+, Ca2+, Sr2+, Ba2+, Mg2+, NH4+ Anions – (CO3)2‐ , S2‐, NO2‐ , SO32‐, SO2‐ , NO ‐ , Cl‐ , Br‐, I‐, PO43‐ , C2O2‐ ,CH3COO‐ (Note: Insoluble salts excluded)
2) Detection of ‐ Nitrogen, Sulphur, Chlorine in organic compounds.
G) PROJECTS Scientific investigations involving laboratory testing and collecting information from other sources.
A few suggested projects are as follows:
Checking the bacterial contamination in drinking water by testing sulphide ion
Study of the methods of purification of water.
Testing the hardness, presence of Iron, Fluoride, Chloride, etc., depending upon the regional variation in drinking water and study of causes of presence of these ions above permissible limit (if any).
Investigation of the foaming capacity of different washing soaps and the effect of addition of Sodium carbonate on it.
Study the acidity of different samples of tea leaves.
Determination of the rate of evaporation of different liquids Study the effect of acids and bases on the tensile strength of fibres.
Study of acidity of fruit and vegetable juices.
Note: Any other investigatory project, which involves about 10 periods of work, can be chosen with theapproval of the teacher.
Practical Examination for Visually Impaired Students of Class 11
Below is a list of practicals for the visually impaired students.
A. List of apparatus for identification for assessment in practicals (All experiments) Beaker, tripod stand, wire gauze, glass rod, funnel, filter paper, Bunsen burner, test tube, test tube stand, dropper, test tube holder, ignition tube, china dish, tongs, standard flask, pipette, burette, conical flask, clamp stand, dropper, wash bottle • Odour detection in qualitative analysis • Procedure/Setup of the apparatus
B. List of Experiments A. Characterization and Purification of Chemical Substances 1. Crystallization of an impure sample of any one of the following: copper sulphate, benzoic acid B. Experiments based on pH 1. Determination of pH of some solutions obtained from fruit juices, solutions of known and varied concentrations of acids, bases and salts using pH paper 2. Comparing the pH of solutions of strong and weak acids of same concentration.
C. Chemical Equilibrium 1. Study the shift in equilibrium between ferric ions and thiocyanate ions by increasing/decreasing the concentration of eitherions. 2. Study the shift in equilibrium between [Co(H2O)6]2+ and chloride ions by changing the concentration of either of the ions.
D. Quantitative estimation 1. Preparation of standard solution of oxalic acid. 2. Determination of molarity of a given solution of sodium hydroxide by titrating it against standard solution of oxalic acid.
E. Qualitative Analysis 1. Determination of one anion and one cation in a given salt 2. Cations – NH+4 Anions – (CO3)2-, S2-, (SO3)2-, Cl-, CH3COO- (Note: insoluble salts excluded) 3. Detection of Nitrogen in the given organic compound. 4. Detection of Halogen in the given organic compound.
Note: The above practicals may be carried out in an experiential manner rather than recording observations.
We hope students must have found this information on CBSE Syllabus useful for their studying Chemistry. Learn Maths & Science in interactive and fun loving ways with ANAND CLASSES (A School Of Competitions) App/Tablet.
Frequently Asked Questions on CBSE Class 11 Chemistry Syllabus
Q1
How many units are in the CBSE Class 11 Chemistry Syllabus?
There are 9 units in the CBSE Class 11 Chemistry Syllabus. Students can access various study materials for the chapters mentioned in this article for free at ANAND CLASSES (A School Of Competitions).
Q2
What is the total marks for practicals examination as per the CBSE Class 11 Chemistry Syllabus?
The total marks for the practicals as per the CBSE Class 11 Chemistry Syllabus is 30. It includes volumetric analysis, content-based experiment, salt analysis, class record, project work and viva.
Q3
Which chapter carries more weightage as per the CBSE Syllabus for Class 11 Chemistry?
The organic chemistry chapter carries more weightage as per the CBSE Syllabus for Class 11 Chemistry.
Anand Technical Publishers
Buy Products (Printed Books & eBooks) of Anand Classes published by Anand Technical Publishers, Visit at following link :