NCERT Solutions Trigonometric Functions Exercise-3.3 Class 11 Math pdf free download

⭐⭐⭐⭐⭐ (5/5 from 36865 reviews)

Q.1 : Prove that $ \sin^2\frac{\pi}{6} + \cos^2\frac{\pi}{3} – \tan^2\frac{\pi}{4} = -\frac{1}{2} $

Solution

$$
\sin^2\frac{\pi}{6} + \cos^2\frac{\pi}{3} – \tan^2\frac{\pi}{4}
= \left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2 – 1^2
$$

$$
= \frac{1}{4} + \frac{1}{4} – 1 = \frac{1}{2} – 1 = -\frac{1}{2}
$$

Hence proved.


Q.2 : Prove that $ 2\sin^2\frac{\pi}{6} + \csc^2\frac{7\pi}{6} \cos^2\frac{\pi}{3} = \frac{3}{2} $

Solution

$$
2\sin^2\frac{\pi}{6} + \csc^2\frac{7\pi}{6} \cos^2\frac{\pi}{3}
= 2\left(\frac{1}{2}\right)^2 + \csc^2\left(\pi + \frac{\pi}{6}\right)\left(\frac{1}{2}\right)^2
$$

Since $\csc(\pi + \theta) = \csc\theta$,

$$
= 2\cdot\frac{1}{4} + \csc^2\frac{\pi}{6}\cdot\frac{1}{4}
= \frac{1}{2} + \left(2\right)^2\cdot\frac{1}{4}
$$

$$
= \frac{1}{2} + 1 = \frac{3}{2}
$$

Hence proved.


Q.3 : Prove that $ \cot^2\frac{\pi}{6} + \csc\frac{5\pi}{6} + 3\tan^2\frac{\pi}{6} = 6 $

Solution

We know: $\cot\frac{\pi}{6} = \sqrt{3}$, $\tan\frac{\pi}{6} = \frac{1}{\sqrt{3}}$, and $\csc\frac{5\pi}{6} = \csc(\pi – \frac{\pi}{6}) = \csc\frac{\pi}{6} = 2$.

$$
\cot^2\frac{\pi}{6} + \csc\frac{5\pi}{6} + 3\tan^2\frac{\pi}{6}
= (\sqrt{3})^2 + 2 + 3\left(\frac{1}{\sqrt{3}}\right)^2
$$

$$
= 3 + 2 + 1 = 6
$$

Hence proved.


Q.4 : Prove that $ 2\sin^2\frac{3\pi}{4} + 2\cos^2\frac{\pi}{4} + 2\sec^2\frac{\pi}{3} = 10 $

Solution

We know: $\sin\frac{3\pi}{4} = \sin(\pi – \frac{\pi}{4}) = \sin\frac{\pi}{4} = \frac{1}{\sqrt{2}}$,
$\cos\frac{\pi}{4} = \frac{1}{\sqrt{2}}$, and $\sec\frac{\pi}{3} = 2$.

$$
2\sin^2\frac{3\pi}{4} + 2\cos^2\frac{\pi}{4} + 2\sec^2\frac{\pi}{3}
= 2\left(\frac{1}{\sqrt{2}}\right)^2 + 2\left(\frac{1}{\sqrt{2}}\right)^2 + 2(2)^2
$$

$$
= 1 + 1 + 8 = 10
$$

Hence proved.


Q.5.1 : Find the value of $\sin 75^\circ$

$$
\sin 75^\circ = \sin(45^\circ + 30^\circ)
$$

Using $\sin(x + y) = \sin x \cos y + \cos x \sin y$,

$$
\sin 75^\circ = \sin 45^\circ \cos 30^\circ + \cos 45^\circ \sin 30^\circ
$$

$$
= \frac{1}{\sqrt{2}}\cdot\frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}}\cdot\frac{1}{2}
= \frac{\sqrt{3} + 1}{2\sqrt{2}}
$$

Hence, $\sin 75^\circ = \dfrac{\sqrt{3} + 1}{2\sqrt{2}}$.


Q.5.2 : Find the value of $\tan 15^\circ$

$$
\tan 15^\circ = \tan(45^\circ – 30^\circ)
$$

Using $\tan(x – y) = \dfrac{\tan x – \tan y}{1 + \tan x \tan y}$,

$$
\tan 15^\circ = \frac{1 – \frac{1}{\sqrt{3}}}{1 + 1\cdot\frac{1}{\sqrt{3}}}
= \frac{\sqrt{3} – 1}{\sqrt{3} + 1}
$$

Rationalizing the denominator:

$$
\tan 15^\circ = \frac{(\sqrt{3}-1)^2}{(\sqrt{3}+1)(\sqrt{3}-1)} = \frac{4 – 2\sqrt{3}}{2} = 2 – \sqrt{3}.
$$

Hence, $\tan 15^\circ = 2 – \sqrt{3}$


Q.6 : Prove that
$\cos\left(\frac{\pi}{4}-x\right)\cos\left(\frac{\pi}{4}-y\right)
-\sin\left(\frac{\pi}{4}-x\right)\sin\left(\frac{\pi}{4}-y\right)
=\sin(x+y)$

Solution

LHS =
$$
\cos\left(\frac{\pi}{4}-x\right)\cos\left(\frac{\pi}{4}-y\right)
-\sin\left(\frac{\pi}{4}-x\right)\sin\left(\frac{\pi}{4}-y\right)
$$

Multiply and divide by 2:
$$
=\frac{1}{2}\Big[2\cos\left(\frac{\pi}{4}-x\right)\cos\left(\frac{\pi}{4}-y\right)
-2\sin\left(\frac{\pi}{4}-x\right)\sin\left(\frac{\pi}{4}-y\right)\Big]
$$

Use identities
$2\cos A\cos B = \cos(A+B)+\cos(A-B)$
and
$-2\sin A\sin B = \cos(A+B)-\cos(A-B)$.

Then,
$
\text{LHS}=\frac{1}{2}\Big[\cos\big((\tfrac{\pi}{4}-x)+(\tfrac{\pi}{4}-y)\big)
+\cos\big((\tfrac{\pi}{4}-x)-(\tfrac{\pi}{4}-y)\big)
-\cos\big((\tfrac{\pi}{4}-x)+(\tfrac{\pi}{4}-y)\big)
+\cos\big((\tfrac{\pi}{4}-x)-(\tfrac{\pi}{4}-y)\big)\Big]
$

Simplify:
$$
=\frac{1}{2}\Big[2\cos\left(\frac{\pi}{2}-(x+y)\right)\Big]
=\cos\left(\frac{\pi}{2}-(x+y)\right)
$$

Since $\cos\left(\frac{\pi}{2}-\theta\right)=\sin\theta$,
$$
\text{LHS} = \sin(x+y) = \text{RHS}
$$

Hence proved.


Q.7 : Prove that$$
\frac{\tan\left(\frac{\pi}{4}+x\right)}{\tan\left(\frac{\pi}{4}-x\right)}
=\left(\frac{1+\tan x}{1-\tan x}\right)^2$$

Solution

Use the identities:
$$
\tan(A+B)=\frac{\tan A+\tan B}{1-\tan A\tan B}, \quad
\tan(A-B)=\frac{\tan A-\tan B}{1+\tan A\tan B}
$$

Then,
$$
\frac{\tan(\tfrac{\pi}{4}+x)}{\tan(\tfrac{\pi}{4}-x)}
=\frac{\dfrac{1+\tan x}{1-\tan x}}{\dfrac{1-\tan x}{1+\tan x}}
$$

Simplify step by step:
$$
=\frac{1+\tan x}{1-\tan x}\times\frac{1+\tan x}{1-\tan x}
$$

$$
=\left(\frac{1+\tan x}{1-\tan x}\right)^2
$$

Hence proved.


Q.8 : Prove that $$
\frac{\cos(\pi+x)\cos(-x)}{\sin(\pi-x)\cos\left(\frac{\pi}{2}+x\right)}=\cot^2 x$$

Solution

We know:
$\cos(\pi+x)=-\cos x$,
$\cos(-x)=\cos x$,
$\sin(\pi-x)=\sin x$,
$\cos\left(\frac{\pi}{2}+x\right)=-\sin x$.

$$
\text{LHS}=\frac{\cos(\pi+x)\cos(-x)}{\sin(\pi-x)\cos\left(\frac{\pi}{2}+x\right)}$$

Now substitute:
$$
=\frac{(-\cos x)(\cos x)}{(\sin x)(-\sin x)}
$$

Simplify:
$$
=\frac{\cos^2 x}{\sin^2 x}
=\left(\frac{\cos x}{\sin x}\right)^2
=\cot^2 x
$$

Hence proved.


Q.9 : Prove that $$
\cos\left(\frac{3\pi}{2}+x\right)\cos(2\pi+x)
\Big[\cot\left(\frac{3\pi}{2}-x\right)+\cot(2\pi+x)\Big]=1 $$

Solution

We know:
$\cos\left(\frac{3\pi}{2}+x\right)=\sin x$,
$\cos(2\pi+x)=\cos x$,
$\cot\left(\frac{3\pi}{2}-x\right)=\tan x$,
$\cot(2\pi+x)=\cot x$.

$$
\text{LHS}=\cos\left(\frac{3\pi}{2}+x\right)\cos(2\pi+x)
\Big[\cot\left(\frac{3\pi}{2}-x\right)+\cot(2\pi+x)\Big] $$

Now substitute:
$$
=\sin x\cos x[\tan x+\cot x]
$$

Simplify stepwise:
$$
=\sin x\cos x\left(\frac{\sin x}{\cos x}+\frac{\cos x}{\sin x}\right)
$$

$$
=\sin x\cos x\cdot\frac{\sin^2 x+\cos^2 x}{\sin x\cos x}
$$

$$
=1
$$

Hence proved.


Q.10 : Prove that $$
\sin((n+1)x)\sin((n+2)x)+\cos((n+1)x)\cos((n+2)x)=\cos x $$

Solution :

$$
\text{LHS}=\sin((n+1)x)\sin((n+2)x)+\cos((n+1)x)\cos((n+2)x) $$

Multiply and divide by 2:

$$
=\frac{1}{2}\Big[2\sin((n+1)x)\sin((n+2)x)
+2\cos((n+1)x)\cos((n+2)x)\Big]
$$

Use formulas:
$$
2\sin A\sin B=\cos(A-B)-\cos(A+B)
$$
and
$$
2\cos A\cos B=\cos(A-B)+\cos(A+B)
$$

Substitute:
$
\text{LHS}=\frac{1}{2}\Big[\cos((n+1)x-(n+2)x)-\cos((n+1)x+(n+2)x)
+\cos((n+1)x-(n+2)x)+\cos((n+1)x+(n+2)x)\Big]
$

Simplify term by term:
$$
=\frac{1}{2}[2\cos((n+1)x-(n+2)x)]
$$

$$
=\frac{1}{2}[2\cos(-x)] = \cos x
$$

Hence proved.


Q.11 : Prove that $$
\cos\left(\frac{3\pi}{4} + x\right) – \cos\left(\frac{3\pi}{4} – x\right) = -\sqrt{2}\sin x $$

Solution

LHS
$$
= \cos\left(\frac{3\pi}{4} + x\right) – \cos\left(\frac{3\pi}{4} – x\right)
$$

Using the identity
$$
\cos A – \cos B = -2 \sin\left(\frac{A + B}{2}\right)\sin\left(\frac{A – B}{2}\right),
$$
we get

$$
= -2 \sin\left(\frac{\frac{3\pi}{4} + x + \frac{3\pi}{4} – x}{2}\right)
\sin\left(\frac{\frac{3\pi}{4} + x – \frac{3\pi}{4} + x}{2}\right)
$$

$$
= -2 \sin\left(\frac{3\pi}{2} \times \frac{1}{2}\right) \sin\left(\frac{2x}{2}\right)
$$

$$
= -2 \sin\frac{3\pi}{4} \sin x
$$

Now,
$$
\sin\frac{3\pi}{4} = \sin\left(\pi – \frac{\pi}{4}\right) = \sin\frac{\pi}{4} = \frac{1}{\sqrt{2}}
$$

Hence,
$$
\text{LHS} = -2 \times \frac{1}{\sqrt{2}} \sin x = -\sqrt{2}\sin x = \text{RHS}
$$

Hence proved.


Q.12 : Prove that $$
\sin^2 6x – \sin^2 4x = \sin 2x \sin 10x $$

Solution

LHS
$$
\sin^2 6x – \sin^2 4x = (\sin 6x + \sin 4x)(\sin 6x – \sin 4x)
$$

Using the identities
$\sin A + \sin B = 2\sin\frac{A + B}{2}\cos\frac{A – B}{2}$
and
$\sin A – \sin B = 2\cos\frac{A + B}{2}\sin\frac{A – B}{2}$,
we get

$$
= [2\sin\frac{6x + 4x}{2}\cos\frac{6x – 4x}{2}]
[2\cos\frac{6x + 4x}{2}\sin\frac{6x – 4x}{2}]
$$

$$
= [2\sin 5x \cos x][2\cos 5x \sin x]
$$

$$
= 4\sin 5x \cos 5x \sin x \cos x
$$

$$
= (2\sin 5x \cos 5x) (2\sin x \cos x)
$$

Now, using $\sin 2A = 2\sin A \cos A$, we get
$$
\text{LHS} = \sin 10x \sin 2x = \text{RHS}
$$

Hence proved.


Q.13 : Prove that $$
\cos^2 2x – \cos^2 6x = \sin 4x \sin 8x $$

Solution

LHS
$$
\cos^2 2x – \cos^2 6x = (\cos 2x + \cos 6x)(\cos 2x – \cos 6x)
$$

Using the identities
$\cos A + \cos B = 2\cos\frac{A + B}{2}\cos\frac{A – B}{2}$
and
$\cos A – \cos B = -2\sin\frac{A + B}{2}\sin\frac{A – B}{2}$,
we get

$$
= [2\cos 4x \cos(-2x)][-2\sin 4x \sin(-2x)]
$$

$$
= [2\cos 4x \cos 2x][2\sin 4x \sin 2x]
$$

$$
= (2\sin 4x \cos 4x)(2\sin 2x \cos 2x)
$$

Using $\sin 2A = 2\sin A \cos A$, we get
$$
\text{LHS} = \sin 8x \sin 4x = \text{RHS}
$$

Hence proved.


Q.14 : Prove that $$
\sin 2x + 2\sin 4x + \sin 6x = 4\cos^2 x \sin 4x $$

Solution

LHS
$$
\sin 2x + 2\sin 4x + \sin 6x = (\sin 2x + \sin 6x) + 2\sin 4x
$$

Using $\sin A + \sin B = 2\sin\frac{A + B}{2}\cos\frac{A – B}{2}$,
$$
= 2\sin\frac{8x}{2}\cos\frac{-4x}{2} + 2\sin 4x
$$

$$
= 2\sin 4x \cos 2x + 2\sin 4x
$$

$$
= 2\sin 4x(\cos 2x + 1)
$$

Now, $\cos 2x = 2\cos^2 x – 1$, so
$$
\text{LHS} = 2\sin 4x(2\cos^2 x – 1 + 1)
$$

$$
= 4\cos^2 x \sin 4x = \text{RHS}
$$

Hence proved.


Q.15 : Prove that $$
\cot 4x (\sin 5x + \sin 3x) = \cot x (\sin 5x – \sin 3x) $$

Solution :
LHS

$$
=\cot 4x (\sin 5x + \sin 3x)
$$

$$
= \frac{\cos 4x}{\sin 4x} (\sin 5x + \sin 3x)
$$

Using $\sin A + \sin B = 2\sin\frac{A + B}{2}\cos\frac{A – B}{2}$,
$$
= \frac{\cos 4x}{\sin 4x}[2\sin 4x \cos x]
$$

$$
= 2\cos 4x \cos x
$$

Now, RHS

$$
=\cot x (\sin 5x – \sin 3x)
$$

$$
= \frac{\cos x}{\sin x} (\sin 5x – \sin 3x)
$$

Using $\sin A – \sin B = 2\cos\frac{A + B}{2}\sin\frac{A – B}{2}$,
$$
= \frac{\cos x}{\sin x}[2\cos 4x \sin x]
$$

$$
= 2\cos 4x \cos x
$$

Hence,
$$
\text{LHS} = \text{RHS}
$$

Hence proved.


Q.16 : Prove that $$
\frac{\cos 9x – \cos 5x}{\sin 17x – \sin 3x} = -\frac{\sin 2x}{\cos 10x}$$

Solution

LHS
$$
= \frac{\cos 9x – \cos 5x}{\sin 17x – \sin 3x}
$$

Using the identities
$\cos A – \cos B = -2\sin\frac{A + B}{2}\sin\frac{A – B}{2}$
and
$\sin A – \sin B = 2\cos\frac{A + B}{2}\sin\frac{A – B}{2}$,
we get

$$
= \frac{-2\sin\frac{9x + 5x}{2}\sin\frac{9x – 5x}{2}}
{2\cos\frac{17x + 3x}{2}\sin\frac{17x – 3x}{2}}
$$

$$
= \frac{-2\sin 7x \sin 2x}{2\cos 10x \sin 7x}
$$

$$
= -\frac{\sin 2x}{\cos 10x} = \text{RHS}
$$

Hence proved.


Q.17 : Prove that $$
\frac{\sin 5x + \sin 3x}{\cos 5x + \cos 3x} = \tan 4x $$

Solution

LHS
$$
= \frac{\sin 5x + \sin 3x}{\cos 5x + \cos 3x}
$$

Using
$\sin A + \sin B = 2\sin\frac{A + B}{2}\cos\frac{A – B}{2}$
and
$\cos A + \cos B = 2\cos\frac{A + B}{2}\cos\frac{A – B}{2}$,
we get

$$
= \frac{2\sin 4x \cos x}{2\cos 4x \cos x}
$$

$$
= \frac{\sin 4x}{\cos 4x} = \tan 4x = \text{RHS}
$$

Hence proved.


18. Prove that

$$
\frac{\sin x – \sin y}{\cos x + \cos y} = \tan\frac{x – y}{2}
$$

Solution

LHS
$$
= \frac{\sin x – \sin y}{\cos x + \cos y}
$$

Using
$\sin A – \sin B = 2\cos\frac{A + B}{2}\sin\frac{A – B}{2}$
and
$\cos A + \cos B = 2\cos\frac{A + B}{2}\cos\frac{A – B}{2}$,
we get

$$
= \frac{2\cos\frac{x + y}{2}\sin\frac{x – y}{2}}
{2\cos\frac{x + y}{2}\cos\frac{x – y}{2}}
$$

$$
= \frac{\sin\frac{x – y}{2}}{\cos\frac{x – y}{2}}
= \tan\frac{x – y}{2} = \text{RHS}
$$

Hence proved.


19. Prove that

$$
\frac{\sin x + \sin 3x}{\cos x + \cos 3x} = \tan 2x
$$

Solution

LHS
$$
= \frac{\sin x + \sin 3x}{\cos x + \cos 3x}
$$

Using
$\sin A + \sin B = 2\sin\frac{A + B}{2}\cos\frac{A – B}{2}$
and
$\cos A + \cos B = 2\cos\frac{A + B}{2}\cos\frac{A – B}{2}$,
we get

$$
= \frac{2\sin 2x \cos x}{2\cos 2x \cos x}
$$

$$
= \frac{\sin 2x}{\cos 2x} = \tan 2x = \text{RHS}
$$

Hence proved.


20. Prove that

$$
\frac{\sin x – \sin 3x}{\sin^2 x – \cos^2 x} = 2\sin x
$$

Solution

LHS
$$
= \frac{\sin x – \sin 3x}{\sin^2 x – \cos^2 x}
$$

Using $\sin A – \sin B = 2\cos\frac{A + B}{2}\sin\frac{A – B}{2}$,
we get

$$
= \frac{2\cos 2x \sin(-x)}{\sin^2 x – \cos^2 x}
$$

$$
= \frac{-2\cos 2x \sin x}{-(\cos^2 x – \sin^2 x)}
$$

But $\cos^2 x – \sin^2 x = \cos 2x$, so

$$
\text{LHS} = \frac{2\cos 2x \sin x}{\cos 2x} = 2\sin x = \text{RHS}
$$

Hence proved.


NCERT Solutions Exercise-3.2 ➡️

📚 Buy Study Material & Join Our Coaching

For premium study materials specially designed for NDA Exam, visit our official study material portal:
👉 https://publishers.anandclasses.co.in/

For JEE/NEET Notes : Visit https://anandclasses.in/

To enroll in our offline or online coaching programs, visit our coaching center website:
👉 https://anandclasses.co.in/

📞 Call us directly at: +91-94631-38669

💬 WhatsApp Us Instantly

Need quick assistance or want to inquire about classes and materials?

📲 Click below to chat instantly on WhatsApp:
👉 Chat on WhatsApp

🎥 Watch Video Lectures

Get access to high-quality video lessons, concept explainers, and revision tips by subscribing to our official YouTube channel:
👉 Neeraj Anand Classes – YouTube Channel

RELATED TOPICS