NCERT Solutions Matrices Exercise 3.2 Class 12 Math Chapter-3 Math PDF Free Download (Set-2)

โญโญโญโญโญ (5/5 from 89246 reviews)

Access NCERT Solutions for Matrices Exercise 3.2 Class 12 Math Chapter-3


NCERT Question.8 : Find $X$ if
$$Y=\begin{bmatrix}3 & 2\\ 1 & 4\end{bmatrix}\; \text{and}\;\; 2X+Y=\begin{bmatrix}1 & 0\\ -3 & 2\end{bmatrix}$$

Solution:
Given
$$2X + Y = \begin{bmatrix}1 & 0\\ -3 & 2\end{bmatrix}$$

and
$$Y = \begin{bmatrix}3 & 2\\ 1 & 4\end{bmatrix}$$

Substituting the value of $Y$:
$$2X + \begin{bmatrix}3 & 2\\ 1 & 4\end{bmatrix} = \begin{bmatrix}1 & 0\\ -3 & 2\end{bmatrix}$$

Subtracting the matrix (Y) from both sides:
$$2X = \begin{bmatrix}1 & 0\\ -3 & 2\end{bmatrix} – \begin{bmatrix}3 & 2\\ 1 & 4\end{bmatrix}$$

Performing subtraction:
$$2X = \begin{bmatrix}1-3 & 0-2\\ -3-1 & 2-4\end{bmatrix}$$

$$2X = \begin{bmatrix}-2 & -2\\ -4 & -2\end{bmatrix}$$

Dividing both sides by 2:
$$X = \frac{1}{2}\begin{bmatrix}-2 & -2\\ -4 & -2\end{bmatrix}$$

$$X = \begin{bmatrix}-1 & -1\\ -2 & -1\end{bmatrix}$$

Matrices questions like this are important for CBSE and competitive exams. Keep practicing more chapter-wise solutions from Anand Classes for scoring high in board exams and strengthening matrix algebra concepts.


NCERT Question.9 : Find $x$ and $y$, if
$$2\begin{bmatrix}1 & 3\\ 0 & x\end{bmatrix} + \begin{bmatrix}y & 0\\ 1 & 2\end{bmatrix} = \begin{bmatrix}5 & 6\\ 1 & 8\end{bmatrix}$$

Solution
Given:
$$2\begin{bmatrix}1 & 3\\ 0 & x\end{bmatrix} = \begin{bmatrix}2 & 6\\ 0 & 2x\end{bmatrix}$$

Now add the matrices:
$$\begin{bmatrix}2 & 6\\ 0 & 2x\end{bmatrix} + \begin{bmatrix}y & 0\\ 1 & 2\end{bmatrix} = \begin{bmatrix}2+y & 6\\ 1 & 2x+2\end{bmatrix}$$

According to given equation :

$$\begin{bmatrix}2+y & 6\\ 1 & 2x+2\end{bmatrix}=\begin{bmatrix}5 & 6\\ 1 & 8\end{bmatrix}$$

Equating corresponding elements:
$$
2 + y = 5 \Rightarrow y = 3
$$

$$
2x + 2 = 8 \Rightarrow 2x = 6 \Rightarrow x = 3
$$

So,
$$
\boxed{x = 3, y = 3}
$$

Matrices problems like these are very helpful for strengthening algebraic skills for board exams and competitive tests. Continue practicing more solutions from Anand Classes for higher accuracy and confidence.


NCERT Question.10 : Solve the equation for $x, y, z$ and $t$, if :
$$2\begin{bmatrix}x & z\\ y & t\end{bmatrix} + 3\begin{bmatrix}1 & -1\\ 0 & 2\end{bmatrix} = 3\begin{bmatrix}3 & 5\\ 4 & 6\end{bmatrix}$$

Solution
Perform scalar multiplication:
$$2\begin{bmatrix}x & z\\ y & t\end{bmatrix} = \begin{bmatrix}2x & 2z\\ 2y & 2t\end{bmatrix}$$

$$3\begin{bmatrix}1 & -1\\ 0 & 2\end{bmatrix} = \begin{bmatrix}3 & -3\\ 0 & 6\end{bmatrix}$$

Substitute:

$$2\begin{bmatrix}x & z\\ y & t\end{bmatrix} + 3\begin{bmatrix}1 & -1\\ 0 & 2\end{bmatrix}=\begin{bmatrix}2x & 2z\\ 2y & 2t\end{bmatrix}+\begin{bmatrix}3 & -3\\ 0 & 6\end{bmatrix}=\begin{bmatrix}2x + 3 & 2z – 3\\ 2y + 0 & 2t + 6\end{bmatrix} $$

According to given equation :

$$\begin{bmatrix}2x + 3 & 2z – 3\\ 2y + 0 & 2t + 6\end{bmatrix}=3\begin{bmatrix}3 & 5\\ 4 & 6\end{bmatrix}$$

$$\begin{bmatrix}2x + 3 & 2z – 3\\ 2y + 0 & 2t + 6\end{bmatrix}= \begin{bmatrix}9 & 15\\ 12 & 18\end{bmatrix}$$

Equating corresponding elements:
$$
2x + 3 = 9,\quad 2z – 3 = 15,\quad 2y = 12,\quad 2t + 6 = 18
$$

Solving:
$$
2x = 6 \Rightarrow x = 3
$$

$$
2y = 12 \Rightarrow y = 6
$$

$$
2z = 18 \Rightarrow z = 9
$$

$$
2t = 12 \Rightarrow t = 6
$$

$$
\boxed{x = 3,\ y = 6,\ z = 9,\ t = 6}
$$

Mastering matrix equations is essential for strong fundamentals in algebra and competitive exam preparation. Keep practicing with Anand Classes for top-quality results!


NCERT Question.11 : If
$$x\begin{bmatrix}2\\ 3\end{bmatrix} + y\begin{bmatrix}-1\\ 1\end{bmatrix} = \begin{bmatrix}10\\ 5\end{bmatrix}$$
find the values of x and y.

Solution

Given matrix equation:
$$x\begin{bmatrix}2\\ 3\end{bmatrix} + y\begin{bmatrix}-1\\ 1\end{bmatrix} = \begin{bmatrix}10\\ 5\end{bmatrix}$$

Scalar multiplication:
$$\begin{bmatrix}2x\\ 3x\end{bmatrix} + \begin{bmatrix}-y\\ y\end{bmatrix} = \begin{bmatrix}10\\ 5\end{bmatrix}$$

Add corresponding elements:
$$\begin{bmatrix}2x – y\\ 3x + y\end{bmatrix} = \begin{bmatrix}10\\ 5\end{bmatrix}$$

Equate entries:
$$
2x – y = 10 \quad …(1)
$$

$$
3x + y = 5 \quad …(2)
$$

Add (1) and (2):
$$
5x = 15 \Rightarrow x = 3
$$

Substitute $x = 3$ in (2):
$$
3(3) + y = 5 \Rightarrow 9 + y = 5 \Rightarrow y = -4
$$

$$
\boxed{x = 3,\quad y = -4}
$$


NCERT Question.12 : Given
$$
3\begin{bmatrix}x & y \\z & w\end{bmatrix}=
\begin{bmatrix}x & 6 \\ -1 & 2w\end{bmatrix}
+
\begin{bmatrix}4 & x+y \\ z+w & 3\end{bmatrix}
$$
find the values of $x, y, z$ and $w$.

Solution
Given
$$
3\begin{bmatrix}x & y \\z & w\end{bmatrix}=
\begin{bmatrix}x & 6 \\ -1 & 2w\end{bmatrix}
+
\begin{bmatrix}4 & x+y \\ z+w & 3\end{bmatrix}
$$

Multiply the left-hand side by 3:
$$
\begin{bmatrix}3x & 3y \\ 3z & 3w\end{bmatrix}=\begin{bmatrix}x+4 & 6+(x+y) \\ -1+(z+w) & 2w+3\end{bmatrix}
$$

$$
\begin{bmatrix}3x & 3y \\ 3z & 3w\end{bmatrix}= \begin{bmatrix}x+4 & x+y+6 \\ z+w-1 & 2w+3\end{bmatrix}
$$

Equate corresponding elements:

$$
3x = x + 4 \quad …(1)
$$

$$
3y = x + y + 6 \quad …(2)
$$

$$
3z = z + w – 1 \quad …(3)
$$

$$
3w = 2w + 3 \quad …(4)
$$

Solve them one by one:

From (1):
$$
3x – x = 4 \Rightarrow 2x = 4 \Rightarrow x = 2
$$

From (4):
$$
3w – 2w = 3 \Rightarrow w = 3
$$

Substitute $x = 2$ into (2):
$$
3y = 2 + y + 6 \Rightarrow 3y – y = 8 \Rightarrow 2y = 8 \Rightarrow y = 4
$$

Substitute $w = 3$ into (3):
$$
3z = z + 3 – 1 \Rightarrow 3z – z = 2 \Rightarrow 2z = 2 \Rightarrow z = 1
$$

Final Answer

$$
\boxed{x = 2,\quad y = 4,\quad z = 1,\quad w = 3}
$$

Boost your matrix algebra skills with expertly curated notes, solved NCERT problems, and exam-oriented practice material from Anand Classes โ€” perfect for CBSE and JEE aspirants aiming for top scores.


NCERT Question.13 : Show that if
$$F(x)=\begin{bmatrix}\cos x & -\sin x & 0\\\sin x & \cos x & 0\\0 & 0 & 1\end{bmatrix}$$
then $F(x)F(y)=F(x+y)$.

Solution
Compute the product $F(x)F(y)$ where
$$F(x)=\begin{bmatrix}\cos x & -\sin x & 0\\\sin x & \cos x & 0\\0 & 0 & 1\end{bmatrix}$$

Multiply the matrices (showing each entry):

$$ F(x)F(y)=\begin{bmatrix}
\cos x & -\sin x & 0\\
\sin x & \cos x & 0\\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
\cos y & -\sin y & 0\\
\sin y & \cos y & 0\\
0 & 0 & 1
\end{bmatrix} $$

$$ =\begin{bmatrix}
(\cos x)(\cos y)+(-\sin x)(\sin y) & (\cos x)(-\sin y)+(-\sin x)(\cos y) & 0\\
(\sin x)(\cos y)+(\cos x)(\sin y) & (\sin x)(-\sin y)+(\cos x)(\cos y) & 0\\
0 & 0 & 1
\end{bmatrix}$$

Now simplify each entry using trigonometric addition formulas:

  • Top-left entry:
    $$\cos x\cos y-\sin x\sin y=\cos(x+y).$$
  • Top-middle entry:
    $$-\cos x\sin y-\sin x\cos y=-(\sin x\cos y+\cos x\sin y)=-\sin(x+y).$$
  • Middle-left entry:
    $$\sin x\cos y+\cos x\sin y=\sin(x+y).$$
  • Middle-middle entry:
    $$-\sin x\sin y+\cos x\cos y=\cos x\cos y-\sin x\sin y=\cos(x+y).$$
  • Other (rightmost column and bottom row) entries remain $0$ or $1$ as in the product above.

Thus
$$
F(x)F(y)=
\begin{bmatrix}
\cos(x+y) & -\sin(x+y) & 0\\
\sin(x+y) & \cos(x+y) & 0\\
0 & 0 & 1
\end{bmatrix}.
$$

But this is exactly $F(x+y)$ by definition. Therefore the equality holds.

Final Result

$$
\boxed{F(x)F(y)=F(x+y)=\begin{bmatrix}\cos(x+y)&-\sin(x+y)&0\\\sin(x+y)&\cos(x+y)&0\\0&0&1\end{bmatrix}}
$$

This identity shows that the family ${F(x)}$ is closed under multiplication and corresponds to rotations about the $z$-axis in 3D โ€” excellent practice for linear algebra and geometry problems. For more clear geometric interpretations, worked examples, and downloadable NCERT-style notes, see Anand Classesโ€™ detailed resources tailored for CBSE and competitive exam preparation.


FAQ Section

Q1. What is covered in Matrices Exercise 3.2 of Class 12 NCERT?

Exercise 3.2 focuses on matrix multiplication, properties of multiplication, and solving numerical problems based on matrix order and rules of multiplication.


Q2. Are these NCERT Solutions useful for CBSE Class 12 board exams?

Yes, the solutions are fully aligned with the CBSE exam pattern and help students score high by strengthening conceptual clarity.


Q3. Can I download the Matrices Exercise 3.2 PDF for free?

Yes, the PDF is available for free download and includes step-wise solutions prepared by Anand Classes.


Q4. Are these solutions useful for competitive exams like JEE?

Yes, understanding matrices is essential for JEE Main, CUET, NDA, and other entrance exams, and these solutions help build strong basics.


Q5. Do I need to refer to any additional book besides NCERT?

For most students, NCERT is sufficient. However, for advanced practice, you may refer to RD Sharma or previous yearsโ€™ papers.

NCERT Solutions Exercise 3.2 (Set-1) โžก๏ธ

๐Ÿ“š Buy Study Material & Join Our Coaching

For premium study materials specially designed for JEE, NEET, NDA, CDS, AFCAT, SSC Exams, visit our official study material portal:
๐Ÿ‘‰ https://publishers.anandclasses.co.in/

For JEE/NEET Notes : Visit https://anandclasses.in/

For NDA Notes : Visit https://nda.anandclasses.in/

For SSC Notes : Visit https://ssc.anandclasses.in/

For CDS, AFCAT Notes : Visit https://cds-afcat.anandclasses.in/

To enroll in our offline or online coaching programs, visit our coaching center website:
๐Ÿ‘‰ https://anandclasses.co.in/

๐Ÿ“ž Call us directly at: +91-94631-38669

๐Ÿ’ฌ WhatsApp Us Instantly

Need quick assistance or want to inquire about classes and materials?

๐Ÿ“ฒ Click below to chat instantly on WhatsApp:
๐Ÿ‘‰ Chat on WhatsApp

๐ŸŽฅ Watch Video Lectures

Get access to high-quality video lessons, concept explainers, and revision tips by subscribing to our official YouTube channel:
๐Ÿ‘‰ Neeraj Anand Classes โ€“ YouTube Channel

RELATED TOPICS