NCERT Solutions Complex Numbers & Quadratic Equations Miscellaneous Exercise

⭐⭐⭐⭐⭐ (5/5 from 34865 reviews)

1. Evaluate: $$([i^{18} + \frac{1}{i^{25}}]^3)$$

Solution :

$$
([i^{18} + \frac{1}{i^{25}}]^3)
$$

Rewrite powers as multiples of 4:

$$
i^{18} = i^{4 \cdot 4 + 2} = (i^4)^4 \cdot i^2
$$

$$
(1/i)^{25} = 1/i^{25} = 1/(i^{4\cdot6 + 1}) = 1/((i^4)^6 \cdot i)
$$

Since ($i^4 = 1$) and ($i^2 = -1$):

$$
[i^{18} + (1/i)^{25}]^3 = [-1 + 1/i]^3
$$

Rationalize (1/i):

$$
\frac{1}{i} \cdot \frac{i}{i} = \frac{i}{i^2} = -i
$$

Hence:

$$
[-1 + 1/i]^3 = (-1 – i)^3
$$

Expand the cube:

$$
(-1 – i)^3 = (-1)^3 + 3(-1)^2(-i) + 3(-1)(-i)^2 + (-i)^3
$$

Compute powers of (i) (($i^2=-1, i^3=-i$)):

$$
(-1 – i)^3 = -1 – 3i + 3 + i = 2 – 2i
$$

Answer:
$$(\boxed{2 – 2i})$$


2. Prove that $$(\Re(z_1 z_2) = \Re z_1 \Re z_2 – \Im z_1 \Im z_2)$$

Solution

Let

$$
z_1 = x_1 + i y_1, \quad z_2 = x_2 + i y_2
$$

Multiply:

$$
z_1 z_2 = (x_1 + i y_1)(x_2 + i y_2)
$$

Step by step:

$$
z_1 z_2 = x_1 x_2 + i x_1 y_2 + i x_2 y_1 + i^2 y_1 y_2
$$

Since ($i^2=-1$):

$$
z_1 z_2 = (x_1 x_2 – y_1 y_2) + i(x_1 y_2 + x_2 y_1)
$$

Hence:

$$
Re(z_1 z_2) = x_1 x_2 – y_1 y_2
$$

Also:

$$
Re z_1 \;Re z_2 – Im z_1\; Im z_2 = x_1 x_2 – y_1 y_2
$$

Hence proved.

$$
Re(z_1 z_2) = Re z_1 \;Re z_2 – Im z_1\; Im z_2
$$

Note : Similar property :

$$
Im(z_1 z_2) = (x_1 y_2 + x_2 y_1)
$$

$$
Re z_1 \;Im z_2 + Re z_2\; Im z_1 = (x_1 y_2 + x_2 y_1)
$$

$$
Im(z_1 z_2) = Re z_1 \;Im z_2 + Re z_2\; Im z_1
$$


3. Reduce to standard form:
$$
\left(\frac{1}{1 – 4i} – \frac{2}{i + 1}\right) \frac{3 – 4i}{5 + i}
$$

Solution

Step 1: Compute the bracket:

$$
\frac{1}{1 – 4i} – \frac{2}{i + 1} = \frac{-1 + 9i}{5 – 3i}
$$

Step 2: Multiply by $(\frac{3 – 4i}{5 + i})$

$$
\frac{-1 + 9i}{5 – 3i} \cdot \frac{3 – 4i}{5 + i}
$$

Step 3: Split numerator and denominator:

Numerator:

$$
(-1 + 9i)(3 – 4i) = (-1 \cdot 3) + (-1 \cdot -4i) + (9i \cdot 3) + (9i \cdot -4i) = 33 + 31i
$$

Denominator:

$$
(5 – 3i)(5 + i) = (5 \cdot 5) + (5 \cdot i) + (-3i \cdot 5) + (-3i \cdot i) = 28 – 10i
$$

Step 4: Rationalize:

$$
\frac{33 + 31i}{28 – 10i} \cdot \frac{28 + 10i}{28 + 10i} = \frac{614 + 1198i}{884}
$$

Step 5: Simplify:

$$
\frac{614 + 1198i}{884} = \frac{307}{442} + i \frac{599}{442}
$$

Answer:

$$
\boxed{\frac{307}{442} + i \frac{599}{442}}
$$

NCERT Solutions Ex-4.1 ➡️

📚 Buy Study Material & Join Our Coaching

For premium study materials specially designed for NDA Exam, visit our official study material portal:
👉 https://publishers.anandclasses.co.in/

For JEE/NEET Notes : Visit https://anandclasses.in/

To enroll in our offline or online coaching programs, visit our coaching center website:
👉 https://anandclasses.co.in/

📞 Call us directly at: +91-94631-38669

💬 WhatsApp Us Instantly

Need quick assistance or want to inquire about classes and materials?

📲 Click below to chat instantly on WhatsApp:
👉 Chat on WhatsApp

🎥 Watch Video Lectures

Get access to high-quality video lessons, concept explainers, and revision tips by subscribing to our official YouTube channel:
👉 Neeraj Anand Classes – YouTube Channel

RELATED TOPICS