JEE Main Maths Complex Numbers & Quadratic Equations Previous Year Questions With Solutions
Question 1: If (1 + i) (1 + 2i) (1 + 3i) โฆ.. (1 + ni) = a + ib, then what is 2 * 5 * 10โฆ.(1 + n2) is equal to?
Solution:
We have (1 + i) (1 + 2i) (1 + 3i) โฆ.. (1 + ni) = a + ib โฆ..(i)
(1 โ i) (1 โ 2i) (1 โ 3i) โฆ.. (1 โ ni) = a โ ib โฆ..(ii)
Multiplying (i) and (ii),
we get 2 * 5 * 10 โฆ.. (1 + n2) = a2 + b2
Question 2: If z is a complex number, then the minimum value of |z| + |z โ 1| is ______.
Solution:
First, note that |โz|=|z| and |z1 + z2| โค |z1| + |z2|
Now |z| + |z โ 1| = |z| + |1 โ z| โฅ |z + (1 โ z)|
= |1|
= 1
Hence, minimum value of |z| + |z โ 1| is 1.
Question 3: For any two complex numbers z1 and z2 and any real numbers a and b; |(az1 โ bz2)|2 + |(bz1 + az2)|2 = ___________.
Solution:
|(az1 โ bz2)|2 + |(bz1 + az2)|2
\(\begin{array}{l}= (az_{1}-bz_{2})(a\overline{z_{1}}-b\overline{z_{2}})+(bz_{1}+az_{2})(b\overline{z_{1}}+a\overline{z_{2}})\end{array} \)
= (a2 + b2) (|z1|2 + |z2|2)
Question 4: Find the complex number z satisfying the equations
\(\begin{array}{l}|\frac{z-12}{z-8i}| = \frac{5}{3},\ |\frac{z-4}{z-8}| = 1.\end{array} \)
Solution:
We have
\(\begin{array}{l}|\frac{z-12}{z-8i}| = \frac{5}{3}\end{array} \)
,
\(\begin{array}{l}|\frac{z-4}{z-8}| = 1\end{array} \)
Let z = x + iy, then
\(\begin{array}{l}|\frac{z-12}{z-8i}| = \frac{5}{3}\end{array} \)
โ 3|z โ 12| = 5 |z โ 8i|
3 |(x โ 12) + iy| = 5 |x + (y โ 8) i|
9 (x โ 12)2 + 9y2 = 25x2 + 25 (y โ 8)2 โฆ.(i) and
\(\begin{array}{l}|\frac{z-4}{z-8}| = 1\end{array} \)
โ |z โ 4| = |z โ 8|
|x โ 4 + iy| = |x โ 8 + iy|
(x โ 4)2 + y2 = (x โ 8)2 + y2
โ x = 6
Putting x = 6 in (i), we get y2 โ 25y + 136 = 0
y = 17, 8
Hence, z = 6 + 17i or z = 6 + 8i
Question 5: If z1 = 10 + 6i, z2 = 4 + 6i and z is a complex number such that
\(\begin{array}{l}amp\ \frac{z-z_1}{zโz_2} = \frac{\pi}{4}\end{array} \)
, then the value of |z โ 7 โ 9i| is equal to _________.
Solution:
Given numbers are z1 = 10 + 6i, z2 = 4 + 6i and z = x + iy
\(\begin{array}{l}amp\ \frac{z-z_1}{zโz_2} = \frac{\pi}{4}\end{array} \)
amp [(x โ 10) + i (y โ 6) (x โ 4) + i (y โ 6)] = ฯ / 4
\(\begin{array}{l}\frac{(x โ 4) (y โ 6) โ (y โ 6) (x โ 10)}{(x โ 4) (x โ 10) + (y โ 6)^2}= 1\end{array} \)
12y โ y2 โ 72 + 6y = x2 โ 14x + 40 โฆ..(i)
Now |z โ 7 โ9i| = |(x โ 7) + i (y โ 9)|
From (i), (x2 โ 14x + 49) + (y2 โ 18y + 81) = 18
(x โ 7)2 + (y โ 9)2 = 18 or
[(x โ 7)2 + (y โ 9)2]ยฝ = [18]ยฝ = 3โ2
|(x โ 7) + i (y โ 9)| = 3โ2 or
|z โ 7 โ9i| = 3โ2.
Question 6: Suppose z1, z2, z3 are the vertices of an equilateral triangle inscribed in the circle |z| = 2. If z1 = 1 + iโ3, then find the values of z3 and z2.
Solution:
One of the numbers must be a conjugate of z1 = 1 + iโ3 i.e. z2 = 1 โ iโ3 or z3 = z1 ei2ฯ/3 and
z2 = z1 eโi2ฯ/3 , z3 = (1 + iโ3) [cos (2ฯ / 3) + i sin (2ฯ / 3)] = โ2
Question 7: If cosฮฑ + cos ฮฒ + cos ฮณ = sin ฮฑ + sin ฮฒ + sin ฮณ = 0 then what is the value of cos 3ฮฑ + cos 3ฮฒ + cos 3ฮณ?
Solution:
cos ฮฑ + cos ฮฒ + cos ฮณ = 0 and sin ฮฑ + sin ฮฒ + sin ฮณ = 0
Let a = cos ฮฑ + i sin ฮฑ; b = cos ฮฒ + i sin ฮฒ and c = cos ฮณ + i sin ฮณ.
Therefore, a + b + c = (cosฮฑ + cosฮฒ + cosฮณ) + i (sinฮฑ + sinฮฒ + sinฮณ) = 0 + i0 = 0
If a + b + c = 0, then a3 + b3 + c3 = 3abc or
(cosฮฑ + isina)3 + (cosฮฒ + isinฮฒ)3 + (cosฮณ + isinฮณ)3
= 3 (cosฮฑ + isinฮฑ) (cosฮฒ + isinฮฒ) (cosฮณ + isinฮณ)
โ (cos3ฮฑ + isin3ฮฑ) + (cos3ฮฒ + isin3ฮฒ) + (cos3ฮณ + isin3ฮณ)
= 3 [cos (ฮฑ + ฮฒ + ฮณ) + i sin (ฮฑ + ฮฒ + ฮณ)] or cos 3ฮฑ + cos 3ฮฒ + cos 3ฮณ
= 3 cos (ฮฑ + ฮฒ + ฮณ).
Question 8: If the cube roots of unity are 1, ฯ, ฯ2, then find the roots of the equation (x โ 1)3 + 8 = 0.
Solution:
(x โ 1)3 = โ8 โ x โ 1 = (โ8)1/3
x โ 1 = โ2, โ2ฯ, โ2ฯ2
x = โ1, 1 โ 2ฯ, 1 โ 2ฯ2
Question 9: If 1, ฯ, ฯ2, ฯ3โฆโฆ., ฯnโ1 are the n, nth roots of unity, then (1 โ ฯ) (1 โ ฯ2) โฆ..
(1 โ ฯn โ 1) = ____________.
Solution:
Since 1, ฯ, ฯ2, ฯ3โฆโฆ., ฯnโ1 are the n, nth roots of unity, therefore, we have the identity
= (x โ 1) (x โ ฯ) (x โ ฯ2) โฆ.. (x โ ฯnโ1) = xn โ 1 or
(x โ ฯ) (x โ ฯ2)โฆ..(x โ ฯnโ1) = xnโ1 / xโ1
= xnโ1 + xnโ2 +โฆ.. + x + 1
Putting x = 1 on both sides, we get
(1 โ ฯ) (1 โ ฯ2)โฆ.. (1 โ ฯnโ1) = n
Question 10: If a = cos (2ฯ / 7) + i sin (2ฯ / 7), then the quadratic equation whose roots are ฮฑ = a + a2 + a4 and ฮฒ = a3 + a5 + a6 is _____________.
Solution:
a = cos (2ฯ / 7) + i sin (2ฯ / 7)
a7 = [cos (2ฯ / 7) + i sin (2ฯ / 7)]7
= cos 2ฯ + i sin 2ฯ = 1 โฆ..(i)
S = ฮฑ + ฮฒ = (a + a2 + a4) + (a3 + a5 + a6)
S = a + a2 + a3 + a4 + a5 + a6
\(\begin{array}{l}= \frac{a(1-a^6)}{1-a}\end{array} \)
or
\(\begin{array}{l}S = \frac{a-1}{1-a}= โ1 โฆ..(ii)\end{array} \)
P = ฮฑ * ฮฒ = (a + a2 + a4) (a3 + a5 + a6)
= a4 + a6 + a7 + a5 + a7 + a8 + a7 + a9 + a10
= a4 + a6 + 1 + a5 + 1 + a + 1 + a2 + a3 (From eqn (i)]
= 3+(a + a2 + a3 + a4 + a5 + a6)
= 3 + S = 3 โ 1 = 2 [From (ii)]
Required equation is, x2 โ Sx + P = 0
x2 + x + 2 = 0.
Question 11: Let z1 and z2 be nth roots of unity, which are ends of a line segment that subtend a right angle at the origin. Then n must be of the form ____________.
Solution:
11/n = cos [2rฯ / n] + i sin [2r ฯ / n]
Let z1 = [cos 2r1ฯ / n] + i sin [2r1ฯ / n] and z2 = [cos 2r2ฯ / n] + i sin [2r2ฯ / n].
Then โ Z1 O Z2 = amp (z1 / z2) = amp (z1) โ amp (z2)
= [2 (r1 โ r2)ฯ] / [n]
= ฯ / 2
(Given) n = 4 (r1 โ r2)
= 4 ร integer, so n is of the form 4k.
Question 12: (cos ฮธ + i sin ฮธ)4 / (sin ฮธ + i cos ฮธ)5 is equal to ____________.
Solution:
(cos ฮธ + i sin ฮธ)4 / (sin ฮธ + i cos ฮธ)5
= (cos ฮธ + i sin ฮธ)4 / i5 ([1 / i] sin ฮธ + cos ฮธ)5
= (cosฮธ + i sin ฮธ)4 / i (cos ฮธ โ i sin ฮธ)5
= (cos ฮธ + i sin ฮธ)4 / i (cos ฮธ + i sin ฮธ)โ5 (By property) = 1 / i (cos ฮธ + i sin ฮธ)9
= sin(9ฮธ) โ i cos (9ฮธ).
Question 13: Given z = (1 + iโ3)100, then find the value of Re (z) / Im (z).
Solution:
Let z = (1 + iโ3)
r = โ[3 + 1] = 2 and r cosฮธ = 1, r sinฮธ = โ3, tanฮธ = โ3 = tan ฯ / 3 โ ฮธ = ฯ / 3.
z = 2 (cos ฯ / 3 + i sin ฯ / 3)
z100 = [2 (cos ฯ / 3 + i sin ฯ / 3)]100
= 2100 (cos 100ฯ / 3 + i sin 100ฯ / 3)
= 2100 (โcos ฯ / 3 โ i sin ฯ / 3)
= 2100(โ1 / 2 โi โ3 / 2)
Re(z) / Im(z) = [โ1/2] / [โโ3 / 2] = 1 / โ3.
Question 14: If x = a + b, y = aฮฑ + bฮฒ and z = aฮฒ + bฮฑ, where ฮฑ and ฮฒ are complex cube roots of unity, then what is the value of xyz?
Solution:
If x = a + b, y = aฮฑ + bฮฒ and z = aฮฒ + bฮฑ, then xyz = (a + b) (aฯ + bฯ2) (aฯ2 + bฯ),where ฮฑ = ฯ and ฮฒ = ฯ2 = (a + b) (a2 + abฯ2 + abฯ + b2)
= (a + b) (a2โ ab + b2)
= a3 + b3
Question 15: If ฯ is an imaginary cube root of unity, (1 + ฯ โ ฯ2)7 equals to ___________.
Solution:
(1 + ฯ โ ฯ2)7 = (1 + ฯ + ฯ2 โ 2ฯ2)7
= (โ2ฯ2)7
= โ128ฯ14
= โ128ฯ12ฯ2
= โ128ฯ2
Question 16: If ฮฑ, ฮฒ, ฮณ are the cube roots of p (p < 0), then for any x, y and z, find the value of [xฮฑ + yฮฒ + zฮณ] / [xฮฒ + yฮณ + zฮฑ].
Solution:
Since p < 0.
Let p = โq, where q is positive.
Therefore, p1/3 = โq1/3(1)1/3.
Hence ฮฑ = โq1/3, ฮฒ = โq1/3 ฯ and ฮณ = โq1/3ฯ2
The given expression [x + yฯ + zฯ2] / [xฯ + yฯ2 + z] = (1 / ฯ) * [xฯ + yฯ2 + z] / [xฯ + yฯ2 + z]
= ฯ2.
Question 17: The common roots of the equations x12 โ 1 = 0, x4 + x2 + 1 = 0 are __________.
Solution:
x12 โ 1 = (x6 + 1) (x6 โ 1)
= (x6 + 1) (x2 โ 1) (x4 + x2 + 1)
Common roots are given by x4 + x2 + 1 =0
x2 = [โ1 ยฑ i โ3] / [2] = ฯ, ฯ2 or ฯ4, ฯ2 (Because ฯ3 = 1) or
x = ยฑ ฯ2, ยฑ ฯ
Question 18: Given that the equation z2 + (p + iq)z + r + is = 0, where p, q, r, s are real and non-zero has a real root, then how are p, q, r and s related?
Solution:
Given that z2 + (p + iq)z + r + is = 0 โฆโฆ(i)
Let z = ฮฑ (where ฮฑ is real) be a root of (i), then
ฮฑ2 + (p + iq)ฮฑ + r + is = 0 or
ฮฑ2 + pฮฑ + r + i (qฮฑ + s) = 0
Equating real and imaginary parts, we have ฮฑ2 + pฮฑ + r = 0 and qฮฑ + s = 0
Eliminating ฮฑ, we get
(โs / q)2 + p (โs / q) + r = 0 or
s2 โ pqs + q2r = 0 or
pqs = s2 + q2r
Question 19: The difference between the corresponding roots of x2 + ax + b = 0 and x2 + bx + a = 0 is same and aโ b, then what is the relation between a and b?
Solution:
Let ฮฑ, ฮฒ and ฮณ,ฮด be the roots of the equations x2 + ax + b = 0 and x2 + bx + a = 0, respectively therefore, ฮฑ + ฮฒ = โa, ฮฑฮฒ = b and ฮด + ฮณ = โb, ฮณฮด = a.
Given |ฮฑ โ ฮฒ| =|ฮณ โ ฮด| โ (ฮฑ + ฮฒ)2 โ 4ฮฑฮฒ
= (ฮณ + ฮด)2 โ4ฮณฮด
โ a2 โ 4b = b2 โ 4a
โ (a2 โ b2) + 4 (a โ b) = 0
โ a + b + 4 = 0 (Because aโ b)
Question 20: If b1 b2 = 2 (c1 + c2), then at least one of the equations x2 + b1x + c1 = 0 and x2 + b2x + c2 = 0 has ____________ roots.
Solution:
Let D1 and D2 be discriminants of x2 + b1x + c1 = 0 and x2 + b2x + c2 = 0, respectively.
Then,
D1 + D2 = b12 โ 4c1 + b22 โ 4c2
= (b12 + b22) โ 4 (c1 + c2)
= b12 + b22 โ 2b1b2 [Because b1b2 = 2 (c1 + c2)] = (b1 โ b2)2 โฅ 0
โ D1 โฅ 0 or D2 โฅ 0 or D1 and D2 both are positive.
Hence, at least one of the equations has real roots.
Question 21: If the roots of the equation x2 + 2ax + b = 0 are real and distinct and they differ by at most 2m then b lies in what interval?
Solution:
Let the roots be ฮฑ, ฮฒ
ฮฑ + ฮฒ = โ2a and ฮฑฮฒ = b
Given, |ฮฑ โ ฮฒ| โค 2m
or |ฮฑ โ ฮฒ|2 โค (2m)2 or
(ฮฑ + ฮฒ)2โ 4ฮฑฮฒ โค 4m2 or
4a2 โ 4b โค 4m2
โ a2 โ m2 โค b and discriminant D > 0 or
4a2 โ 4b > 0
โ a2 โ m2 โค b and b < a2.
Hence, b โ [a2 โ m2 , a2).
Question 22: If ([1 + i] / [1 โ i])m = 1, then what is the least integral value of m?
Solution:
[1 + i] / [1 โ i] = ([1 + i] / [1 โ i]) ร [1 + i] / [1 + i]
= [(1 + i)2] / [2]
= 2i / 2
= i
([1 + i] / [1 โ i])m = 1 (as given)
So, the least value of m = 4 {Because i4 = 1}
Question 23: If (1 โ i) x + (1 + i) y = 1 โ 3i, then (x, y) = ______________.
Solution:
(1 โ i) x + (1 + i) y = 1 โ 3i
โ (x + y) + i (โx + y) = 1 โ 3i
Equating real and imaginary parts, we get x + y = 1 and โx + y = โ3;
So, x = 2, y = โ1.
Thus, the point is (2, โ1).
Question 24: [3 + 2i sinฮธ] / [1 โ 2i sinฮธ] will be purely imaginary if ฮธ = ___________.
Solution:
[3 + 2i sinฮธ] / [1 โ 2i sinฮธ] will be purely imaginary, if the real part vanishes, i.e.,
[3 โ 4 sin2 ฮธ] / [1 + 4 sin2ฮธ] = 0
3 โ 4 sin2 ฮธ (only if ฮธ be real)
sinฮธ = ยฑโ3 / 2
= sin(ยฑ ฯ / 3)
ฮธ = nฯ + (โ1)n (ยฑ ฯ / 3)
= nฯ ยฑ ฯ / 3
Question 25: The real values of x and y for which the equation is (x + iy) (2 โ 3i) = 4 + i is satisfied, are __________.
Solution:
Equation (x + iy) (2 โ 3i) = 4 + i
(2x + 3y) + i (โ3x + 2y) = 4 + i
Equating real and imaginary parts, we get
2x + 3y = 4 โฆโฆ(i)
โ3x + 2y = 1 โฆโฆ(ii)
From (i) and (ii), we get
x = 5 / 13, y = 14 / 13

