Introduction To Three Dimensional Geometry NCERT Solutions Exercise 11.2 Class 11 Math

โญโญโญโญโญ (5/5 from 39732 reviews)

NCERT Question.1 : Find the distance between the following pairs of points
(i) Points (2, 3, 5) and (4, 3, 1)
(ii) Points (โ€“3, 7, 2) and (2, 4, โ€“1)
(iii) Points (โ€“1, 3, โ€“4) and (1, โ€“3, 4)
(iv) Points (2, โ€“1, 3) and (โ€“2, 1, 3)

Solution :

(i) Points (2, 3, 5) and (4, 3, 1)

Let $P(2, 3, 5)$ and $Q(4, 3, 1)$.

By using the distance formula:

$$
\text{Distance } PQ = \sqrt{(x_2 – x_1)^2 + (y_2 – y_1)^2 + (z_2 – z_1)^2}
$$

Substituting the values:

$$
x_1 = 2,\ y_1 = 3,\ z_1 = 5 \
x_2 = 4,\ y_2 = 3,\ z_2 = 1
$$

$$
PQ = \sqrt{(4 – 2)^2 + (3 – 3)^2 + (1 – 5)^2}
$$

$$
= \sqrt{(2)^2 + (0)^2 + (-4)^2}
$$

$$
= \sqrt{4 + 0 + 16} = \sqrt{20} = 2\sqrt{5}
$$

โˆด The distance between the points is $2\sqrt{5}$ units.

(ii) Points (โ€“3, 7, 2) and (2, 4, โ€“1)

Let $P(-3, 7, 2)$ and $Q(2, 4, -1)$.

By the distance formula:

$$
PQ = \sqrt{(x_2 – x_1)^2 + (y_2 – y_1)^2 + (z_2 – z_1)^2}
$$

Substituting:

$$
x_1 = -3,\ y_1 = 7,\ z_1 = 2 \
x_2 = 2,\ y_2 = 4,\ z_2 = -1
$$

$$
PQ = \sqrt{(2 – (-3))^2 + (4 – 7)^2 + (-1 – 2)^2}
$$

$$
= \sqrt{(5)^2 + (-3)^2 + (-3)^2}
$$

$$
= \sqrt{25 + 9 + 9} = \sqrt{43}
$$

โˆด The distance between the points is $\sqrt{43}$ units.

(iii) Points (โ€“1, 3, โ€“4) and (1, โ€“3, 4)

Let $P(-1, 3, -4)$ and $Q(1, -3, 4)$.

By the distance formula:

$$
PQ = \sqrt{(x_2 – x_1)^2 + (y_2 – y_1)^2 + (z_2 – z_1)^2}
$$

Substituting:

$$
x_1 = -1,\ y_1 = 3,\ z_1 = -4 \
x_2 = 1,\ y_2 = -3,\ z_2 = 4
$$

$$
PQ = \sqrt{(1 – (-1))^2 + (-3 – 3)^2 + (4 – (-4))^2}
$$

$$
= \sqrt{(2)^2 + (-6)^2 + (8)^2}
$$

$$
= \sqrt{4 + 36 + 64} = \sqrt{104} = 2\sqrt{26}
$$

โˆด The distance between the points is $2\sqrt{26}$ units.

(iv) Points (2, โ€“1, 3) and (โ€“2, 1, 3)

Let $P(2, -1, 3)$ and $Q(-2, 1, 3)$.

By the distance formula:

$$
PQ = \sqrt{(x_2 – x_1)^2 + (y_2 – y_1)^2 + (z_2 – z_1)^2}
$$

Substituting:

$$
x_1 = 2,\ y_1 = -1,\ z_1 = 3 \
x_2 = -2,\ y_2 = 1,\ z_2 = 3
$$

$$
PQ = \sqrt{(-2 – 2)^2 + (1 – (-1))^2 + (3 – 3)^2}
$$

$$
= \sqrt{(-4)^2 + (2)^2 + (0)^2}
$$

$$
= \sqrt{16 + 4 + 0} = \sqrt{20} = 2\sqrt{5}
$$

โˆด The required distance is $2\sqrt{5}$ units.

Download detailed NCERT solutions by Anand Classes for Class 11 Maths, JEE Main, NDA, and CUET preparation.
Related topics: Distance formula in 3D geometry, coordinate geometry class 11, distance between two points formula, 3D coordinate system examples.


NCERT Question.2 : Show that the points (โ€“2, 3, 5), (1, 2, 3) and (7, 0, โ€“1) are collinear.

Solution :

If three points are collinear, then they lie on the same straight line.

Step 1: Find the distance between each pair of points

Let
$P(-2, 3, 5)$, $Q(1, 2, 3)$ and $R(7, 0, -1)$.

(i) Distance $PQ$

By the distance formula:

$$
PQ = \sqrt{(x_2 – x_1)^2 + (y_2 – y_1)^2 + (z_2 – z_1)^2}
$$

Substituting values:

$$
x_1 = -2,\ y_1 = 3,\ z_1 = 5 \
x_2 = 1,\ y_2 = 2,\ z_2 = 3
$$

$$
PQ = \sqrt{(1 – (-2))^2 + (2 – 3)^2 + (3 – 5)^2}
$$

$$
= \sqrt{(3)^2 + (-1)^2 + (-2)^2}
$$

$$
= \sqrt{9 + 1 + 4} = \sqrt{14}
$$

Hence,
$$PQ = \sqrt{14}$$

(ii) Distance $QR$

By the distance formula:

$$
QR = \sqrt{(x_2 – x_1)^2 + (y_2 – y_1)^2 + (z_2 – z_1)^2}
$$

Substituting:

$$
x_1 = 1,\ y_1 = 2,\ z_1 = 3 \
x_2 = 7,\ y_2 = 0,\ z_2 = -1
$$

$$
QR = \sqrt{(7 – 1)^2 + (0 – 2)^2 + (-1 – 3)^2}
$$

$$
= \sqrt{(6)^2 + (-2)^2 + (-4)^2}
$$

$$
= \sqrt{36 + 4 + 16} = \sqrt{56} = 2\sqrt{14}
$$

Hence,
$$QR = 2\sqrt{14}$$

(iii) Distance $PR$

By the distance formula:

$$
PR = \sqrt{(x_2 – x_1)^2 + (y_2 – y_1)^2 + (z_2 – z_1)^2}
$$

Substituting:

$$
x_1 = -2,\ y_1 = 3,\ z_1 = 5 \
x_2 = 7,\ y_2 = 0,\ z_2 = -1
$$

$$
PR = \sqrt{(7 – (-2))^2 + (0 – 3)^2 + (-1 – 5)^2}
$$

$$
= \sqrt{(9)^2 + (-3)^2 + (-6)^2}
$$

$$
= \sqrt{81 + 9 + 36} = \sqrt{126} = 3\sqrt{14}
$$

Hence,
$$PR = 3\sqrt{14}$$

Step 2: Check for collinearity

We have:
$$PQ = \sqrt{14}, \quad QR = 2\sqrt{14}, \quad PR = 3\sqrt{14}$$

Now,
$$PQ + QR = \sqrt{14} + 2\sqrt{14} = 3\sqrt{14} = PR$$

โˆด The three points P, Q, and R are collinear.

Conclusion:
The points $(-2, 3, 5)$, $(1, 2, 3)$, and $(7, 0, -1)$ lie on the same straight line, proving they are collinear.

Explore more with Anand Classes: Learn 3D geometry concepts like distance formula, section formula, and collinearity of points for Class 11 Maths, JEE Main, and NDA preparation.


NCERT Question.3 : Verify the following
(i) (0, 7, โ€“10), (1, 6, โ€“6) and (4, 9, โ€“6) are the vertices of an isosceles triangle.
(ii) (0, 7, 10), (โ€“1, 6, 6) and (โ€“4, 9, 6) are the vertices of a right-angled triangle.
(iii) ( -1, 2, 1 ), (1, -2, 5), (4, -7, 8) and (2, -3, 4) are the vertices of a parallelogram.

Solution:
(i) (0, 7, โ€“10), (1, 6, โ€“6) and (4, 9, โ€“6) are the vertices of an isosceles triangle.

Let us consider the points be

$P(0, 7, -10),\ Q(1, 6, -6)\ \text{and}\ R(4, 9, -6)$

If any two sides are equal, hence it will be an isosceles triangle.

So firstly let us calculate the distance of $PQ, QR$.

P โ‰ก $(0, 7, -10)$ and Q โ‰ก $(1, 6, -6)$

Now, by using the distance formula,

$$
\text{Length of distance } PQ = \sqrt{(x_2 – x_1)^2 + (y_2 – y_1)^2 + (z_2 – z_1)^2}
$$

So here,

$x_1 = 0,\ y_1 = 7,\ z_1 = -10$
$x_2 = 1,\ y_2 = 6,\ z_2 = -6$

$$
PQ = \sqrt{(1 – 0)^2 + (6 – 7)^2 + \big(-6 – (-10)\big)^2}
$$

$$
= \sqrt{(1)^2 + (-1)^2 + (4)^2}
$$

$$
= \sqrt{1 + 1 + 16} = \sqrt{18}
$$

Calculating $QR$

Q โ‰ก $(1, 6, -6)$ and R โ‰ก $(4, 9, -6)$

Using the distance formula,

$$
QR = \sqrt{(4 – 1)^2 + (9 – 6)^2 + \big(-6 – (-6)\big)^2}
$$

$$
= \sqrt{(3)^2 + (3)^2 + (0)^2}
$$

$$
= \sqrt{9 + 9 + 0} = \sqrt{18}
$$

Hence,

$$
\text{Length of } PQ = \text{Length of } QR \quad\text{i.e.}\quad \sqrt{18} = \sqrt{18}
$$

โˆด Two sides are equal.

โˆด $PQR$ is an isosceles triangle.

(ii) (0, 7, 10), (โ€“1, 6, 6) and (โ€“4, 9, 6) are the vertices of a right-angled triangle.

$(0, 7, 10),\ (-1, 6, 6)\ \text{and}\ (-4, 9, 6)$ are the vertices of a right-angled triangle.

Let the points be

$P(0, 7, 10), Q(-1, 6, 6), R(-4, 9, 6)$

Firstly let us calculate the distances $PQ , QR$ and $PR$.

Calculating $PQ$

P โ‰ก $(0, 7, 10)$ and Q โ‰ก $(-1, 6, 6)$

$$
PQ = \sqrt{(-1 – 0)^2 + (6 – 7)^2 + (6 – 10)^2}
$$

$$
= \sqrt{(-1)^2 + (-1)^2 + (-4)^2}
$$

$$
= \sqrt{1 + 1 + 16} = \sqrt{18}
$$

Calculating $QR$

Q โ‰ก $(-1, 6, 6)$ and R โ‰ก $(-4, 9, 6)$

$$
QR = \sqrt{(-4 – (-1))^2 + (9 – 6)^2 + (6 – 6)^2}
$$

$$
= \sqrt{(-3)^2 + (3)^2 + (0)^2}
$$

$$
= \sqrt{9 + 9 + 0} = \sqrt{18}
$$

Calculating $PR$

P โ‰ก $(0, 7, 10)$ and R โ‰ก $(-4, 9, 6)$

$$
PR = \sqrt{(-4 – 0)^2 + (9 – 7)^2 + (6 – 10)^2}
$$

$$
= \sqrt{(-4)^2 + (2)^2 + (-4)^2}
$$

$$
= \sqrt{16 + 4 + 16} = \sqrt{36} = 6
$$

Now,

$$
PQ^2 + QR^2 = 18 + 18 = 36 = PR^2
$$

By the converse of Pythagoras’ theorem, the triangle is right-angled at $Q$.

โˆด The given vertices $P, Q, R$ are the vertices of a right-angled triangle at $Q$.

(iii) $( -1, 2, 1 ),\ (1, -2, 5),\ (4, -7, 8)$ and $(2, -3, 4)$ are the vertices of a parallelogram.

$(-1, 2, 1),\ (1, -2, 5),\ (4, -7, 8)\ \text{and}\ (2, -3, 4)$ are the vertices of a parallelogram.

Let the points be:
$A(-1, 2, 1),\ B(1, -2, 5),\ C(4, -7, 8)\, \ D(2, -3, 4)$

$ABCD$ can be vertices of a parallelogram only if opposite sides are equal, i.e. $AB = CD$ and $BC = AD$.

Firstly let us calculate the distances.

A โ‰ก $(-1, 2, 1)$ and B โ‰ก $(1, -2, 5)$

$$
AB = \sqrt{(1 – (-1))^2 + (-2 – 2)^2 + (5 – 1)^2}
$$

$$
= \sqrt{(2)^2 + (-4)^2 + (4)^2}
$$

$$
= \sqrt{4 + 16 + 16} = \sqrt{36} = 6
$$

B โ‰ก $(1, -2, 5)$ and C โ‰ก $(4, -7, 8)$

$$
BC = \sqrt{(4 – 1)^2 + (-7 – (-2))^2 + (8 – 5)^2}
$$

$$
= \sqrt{(3)^2 + (-5)^2 + (3)^2}
$$

$$
= \sqrt{9 + 25 + 9} = \sqrt{43}
$$

C โ‰ก $(4, -7, 8)$ and D โ‰ก $(2, -3, 4)$

$$
CD = \sqrt{(2 – 4)^2 + (-3 – (-7))^2 + (4 – 8)^2}
$$

$$
= \sqrt{(-2)^2 + (4)^2 + (-4)^2}
$$

$$
= \sqrt{4 + 16 + 16} = \sqrt{36} = 6
$$

D โ‰ก $(2, -3, 4)$ and A โ‰ก $(-1, 2, 1)$

$$
DA = \sqrt{(-1 – 2)^2 + (2 – (-3))^2 + (1 – 4)^2}
$$

$$
= \sqrt{(-3)^2 + (5)^2 + (-3)^2}
$$

$$
= \sqrt{9 + 25 + 9} = \sqrt{43}
$$

Since $AB = CD$ and $BC = DA$, both pairs of opposite sides are equal.

Check: Are the diagonals equal (is the parallelogram actually a rectangle)?

We check the diagonals (AC) and (BD) for the points
$$
A(-1,2,1),\quad B(1,-2,5),\quad C(4,-7,8),\quad D(2,-3,4).
$$

Diagonal (AC)

Differences:
$$
\Delta x = 4 – (-1) = 5,\quad
\Delta y = -7 – 2 = -9,\quad
\Delta z = 8 – 1 = 7.
$$
Diagonal Length:
$$
AC = \sqrt{5^2 + (-9)^2 + 7^2} = \sqrt{25 + 81 + 49} = \sqrt{155}.
$$

Diagonal (BD)

Differences:
$
\Delta x = 2 – 1 = 1,\quad
\Delta y = -3 – (-2) = -1,\quad
\Delta z = 4 – 5 = -1.
$
Diagonal Length:
$$
BD = \sqrt{1^2 + (-1)^2 + (-1)^2} = \sqrt{1 + 1 + 1} = \sqrt{3}.
$$

Conclusion

$$
AC = \sqrt{155}\neq \sqrt{3} = BD.
$$
Since the diagonals are not equal, the parallelogram is not a rectangle.

โˆด $ABCD$ is a parallelogram.

Useful practice: distance formula in three dimensions, detecting isosceles and right triangles using side lengths, and checking parallelogram conditions using opposite side equality โ€” great for Class 11 coordinate geometry and competitive exam revision.


NCERT Question.4 : Find the equation of the set of points which are equidistant from the points (1, 2, 3) and (3, 2, โ€“1)

Solution:

Let $A(1,2,3)$ & $B(3,2,-1)$.

Let point $P$ be $(x,y,z)$.

Since it is given that point $P(x,y,z)$ is equal distance from point $A(1,2,3)$ & $B(3,2,-1)$ i.e. $PA=PB$.

$P\equiv (x,y,z)$ and $A\equiv(1,2,3)$.

Now, by using the distance formula,
$$
PA=\sqrt{(1-x)^2+(2-y)^2+(3-z)^2}.
$$

$P\equiv (x,y,z)$ and $B\equiv(3,2,-1)$.

Now, by using the distance formula,
$$
PB=\sqrt{(3-x)^2+(2-y)^2+(-1-z)^2}.
$$

Since $PA=PB$, square both sides to get $PA^2=PB^2$:

$$
(1-x)^2+(2-y)^2+(3-z)^2=(3-x)^2+(2-y)^2+(-1-z)^2.
$$

Expand and simplify (terms $(2-y)^2$ cancel on both sides):

$$
(1 – 2x + x^2) + (9 – 6z + z^2) = (9 – 6x + x^2) + (1 + 2z + z^2).
$$

Collect like terms:

$$
-2x -6z +10 = -6x +2z +10.
$$

Bring all terms to one side:

$$
4x -8z = 0
$$

Divide by 4:

$$
x – 2z = 0.
$$

โˆด The required equation is
$$
\boxed{x – 2z = 0.}
$$


NCERT Question.5 : Find the equation of the set of points $P$, the sum of whose distances from $A(4,0,0)$ and $B(-4,0,0)$ is equal to $10$.

Solution:

Let $A(4,0,0)$ & $B(-4,0,0)$.

Let the coordinates of point $P$ be $(x,y,z)$.

Calculating $PA$:

$P\equiv(x,y,z)$ and $A\equiv(4,0,0)$.

By the distance formula,
$$
PA=\sqrt{(4-x)^2+(0-y)^2+(0-z)^2}=\sqrt{(4-x)^2+y^2+z^2}.
$$

Calculating $PB$:

$P\equiv(x,y,z)$ and $B\equiv(-4,0,0)$.

By the distance formula,
$$
PB=\sqrt{(-4-x)^2+(0-y)^2+(0-z)^2}=\sqrt{( -4-x)^2+y^2+z^2}.
$$

Now it is given that:
$$
PA + PB = 10.
$$

Let $PA=10-PB$. Square both sides:
$$
PA^2=(10-PB)^2=100+PB^2-20PB.
$$

Substitute $PA^2=(4-x)^2+y^2+z^2$ and $PB^2=(-4-x)^2+y^2+z^2$:

$$
(4-x)^2+y^2+z^2 = 100 + (-4-x)^2+y^2+z^2 – 20PB.
$$

Cancel $y^2+z^2$ from both sides and expand:

$$
(16 + x^2 -8x) = 100 + (16 + x^2 +8x) – 20PB.
$$

Simplify:

$$
20PB = 16x + 100.
$$

So
$$
5PB = 4x + 25.
$$

Square again:

$$
25PB^2 = (4x+25)^2 = 16x^2 + 200x + 625.
$$

But $PB^2 = (-4-x)^2 + y^2 + z^2 = x^2 + 8x +16 + y^2 + z^2$. Substitute:

$$
25\big(x^2 + 8x + 16 + y^2 + z^2\big) = 16x^2 + 200x + 625.
$$

Expand left side:

$$
25x^2 + 200x + 400 + 25y^2 + 25z^2 = 16x^2 + 200x + 625.
$$

Bring all terms to one side:

$$
9x^2 + 25y^2 + 25z^2 -225 = 0.
$$

Thus the required equation is
$$
\boxed{9x^2 + 25y^2 + 25z^2 -225 = 0.}
$$

(Equivalently, dividing by $225$ gives the standard ellipsoid form $$\frac{x^2}{25}+\frac{y^2}{9}+\frac{z^2}{9}=1$$ with foci at $(\pm4,0,0)$ and semi-major axis $a=5$.)

Locus is an ellipsoid with foci at $(4,0,0)$ and $(-4,0,0)$; principal semi-axes $a=5$ and $b=3$.

โฌ…๏ธ Miscellaneous Exercise NCERT Solutions Exercise 11.1 โžก๏ธ

๐Ÿ“š Buy Study Material & Join Our Coaching

For premium study materials specially designed for JEE, NEET, NDA, CDS, AFCAT, SSC Exams, visit our official study material portal:
๐Ÿ‘‰ https://publishers.anandclasses.co.in/

For JEE/NEET Notes : Visit https://anandclasses.in/

For NDA Notes : Visit https://nda.anandclasses.in/

For SSC Notes : Visit https://ssc.anandclasses.in/

For CDS, AFCAT Notes : Visit https://cds-afcat.anandclasses.in/

To enroll in our offline or online coaching programs, visit our coaching center website:
๐Ÿ‘‰ https://anandclasses.co.in/

๐Ÿ“ž Call us directly at: +91-94631-38669

๐Ÿ’ฌ WhatsApp Us Instantly

Need quick assistance or want to inquire about classes and materials?

๐Ÿ“ฒ Click below to chat instantly on WhatsApp:
๐Ÿ‘‰ Chat on WhatsApp

๐ŸŽฅ Watch Video Lectures

Get access to high-quality video lessons, concept explainers, and revision tips by subscribing to our official YouTube channel:
๐Ÿ‘‰ Neeraj Anand Classes โ€“ YouTube Channel

RELATED TOPICS