Integrals NCERT Solutions Exercise 7.4 Chapter-7 Class 12 Math PDF Study Material (Set-1)

โญโญโญโญโญ (5/5 from 58921 reviews)

NCERT Question 1: Evaluate the integral
$$\int \frac{3x^2}{x^6 + 1} \; dx$$

Solution

$$\int \frac{3x^2}{x^6 + 1} \; dx$$

Let $x^3 = t$

So $3x^2 dx = dt$

$$\int \frac{3x^2}{x^6 + 1} dx = \int \frac{dt}{t^2 + 1}$$

$$= \tan^{-1} t + C$$

$$= \tan^{-1} (x^3) + C$$

Enhance your preparation with expertly structured notes and problem-solving guides from Anand Classes, ideal for JEE, CBSE, and competitive exams, with clear NCERT-based explanations to strengthen conceptual understanding.


NCERT Question 2: Evaluate the integral
$$\int \frac{1}{\sqrt{1 + 4x^2}} dx$$

Solution

$$\int \frac{1}{\sqrt{1 + 4x^2}} dx$$

Let $2x = t$

So $2 dx = dt$

$$\int \frac{1}{\sqrt{1 + 4x^2}} dx = \frac{1}{2} \int \frac{1}{\sqrt{1 + t^2}} dt$$

$$= \frac{1}{2} \ln \left| t + \sqrt{t^2 + 1} \right| + C$$

$$= \frac{1}{2} \ln \left| 2x + \sqrt{4x^2 + 1} \right| + C$$

Strengthen your calculus learning with detailed, exam-oriented notes and solved integrals from Anand Classes, highly useful for JEE, CBSE, and competitive exam preparation.


NCERT Question 3: Evaluate the integral
$$\int \frac{1}{(\sqrt{2 – x})^2 + 1}\; dx$$

Solution

$$\int \frac{1}{(\sqrt{2 – x})^2 + 1}\; dx$$

Let $2 – x = t$

So $-dx = dt$

$$\int \frac{1}{\sqrt{(2 – x)^2} + 1}; dx = -\int \frac{1}{\sqrt{t^2 + 1}}; dt$$

$$= -\ln \left| t + \sqrt{t^2 + 1} \right| + C$$

$$= -\ln \left| 2 – x + \sqrt{(2 – x)^2 + 1} \right| + C$$

$$\boxed{=-\ln \left| 2 – x + \sqrt{(2 – x)^2 + 1} \right| + C}$$

$$\boxed{=\ln \left|\frac{1}{ 2 – x + \sqrt{(2 – x)^2 + 1}}\right| + C}$$

Strengthen your conceptual clarity in integrals with detailed step-by-step solutions from Anand Classes, ideal for students preparing for JEE, CBSE, and other competitive examinations.


NCERT Question 4: Evaluate the integral
$$\int \frac{1}{\sqrt{9 – 25x^2}}\; dx$$

Solution

$$\int \frac{1}{\sqrt{9 – 25x^2}}\; dx$$

Let $5x = t$

So $5 dx = dt$

$$\int \frac{1}{\sqrt{9 – 25x^2}}\; dx = \frac{1}{5} \int \frac{1}{\sqrt{9 – t^2}}\; dt$$

$$= \frac{1}{5} \sin^{-1} \left( \frac{t}{3} \right) + C$$

$$= \frac{1}{5} \sin^{-1} \left( \frac{5x}{3} \right) + C$$

$$\boxed{\frac{1}{5} \sin^{-1} \left( \frac{5x}{3} \right) + C}$$

Enhance your preparation with clear, step-by-step integral solutions from Anand Classes, highly useful for JEE, CBSE, and competitive exam study.


NCERT Question 5: Evaluate the integral
$$\int \frac{3x}{1 + 2x^4}\ dx$$

Solution

$$\int \frac{3x}{1 + 2x^4}\ dx$$

Let $u = x^2$

So $du = 2x\ dx$ and $x\ dx = \dfrac{1}{2} du$

$$\int \frac{3x}{1 + 2x^4}\ dx = 3\int \frac{x\ dx}{1 + 2(x^2)^2}$$

$$= 3\int \frac{x\ dx}{1 + 2u^2}$$

$$= 3\int \frac{\dfrac{1}{2} du}{1 + 2u^2}$$

$$= \frac{3}{2}\int \frac{du}{1 + 2u^2}$$

Write $1 + 2u^2 = 1 + (\sqrt{2}\ u)^2$

$$\int \frac{du}{1 + 2u^2} = \frac{1}{\sqrt{2}}\tan^{-1}(\sqrt{2}\ u) + C$$

Therefore

$$\frac{3}{2}\int \frac{du}{1 + 2u^2} = \frac{3}{2\sqrt{2}}\tan^{-1}(\sqrt{2}\ u) + C$$

Substitute $u = x^2$

$$= \frac{3}{2\sqrt{2}}\tan^{-1}(\sqrt{2}\ x^2) + C$$

$$\boxed{\frac{3}{2\sqrt{2}}\tan^{-1}(\sqrt{2}\ x^2) + C}$$

Get high quality study notes and detailed integral solutions from Anand Classes perfect for JEE CBSE and competitive exam preparation.


NCERT Question 6: Evaluate the integral
$$\int \frac{x^2}{1 – x^6}\ dx$$

Solution

$$\int \frac{x^2}{1 – x^6}\ dx$$

Let $u = x^3$

So $du = 3x^2\ dx$ and $x^2\ dx = \dfrac{1}{3}\ du$

$$\int \frac{x^2}{1 – x^6}\ dx = \frac{1}{3}\int \frac{du}{1 – u^2}$$

$$\frac{1}{3}\int \frac{du}{1 – u^2} = \frac{1}{3}\cdot\frac{1}{2}\ln\left|\frac{1 + u}{1 – u}\right| + C$$

$$= \frac{1}{6}\ln\left|\frac{1 + x^3}{1 – x^3}\right| + C$$

$$\boxed{\frac{1}{6}\ln\left|\frac{1 + x^3}{1 – x^3}\right| + C}$$

Download concise revision notes and solved integrals from Anand Classes perfect for JEE CBSE and competitive exam preparation with clear MathJax explanations.


NCERT Question 7: Evaluate the integral
$$\int \frac{x – 1}{\sqrt{x^2 – 1}}\ dx$$

Solution

$$\int \frac{x – 1}{\sqrt{x^2 – 1}}\ dx$$

$$= \int \frac{x}{\sqrt{x^2 – 1}}\ dx \;-\; \int \frac{1}{\sqrt{x^2 – 1}}\ dx$$

Let $u = x^2 – 1$

So $du = 2x\ dx$ and $x\ dx = \dfrac{1}{2}\ du$

$$\int \frac{x}{\sqrt{x^2 – 1}}\ dx = \frac{1}{2}\int \frac{du}{\sqrt{u}} = \frac{1}{2}\cdot 2\sqrt{u} = \sqrt{u} = \sqrt{x^2 – 1}$$

$$\int \frac{1}{\sqrt{x^2 – 1}}\ dx = \ln\left|x + \sqrt{x^2 – 1}\right| + C$$

Therefore

$$\int \frac{x – 1}{\sqrt{x^2 – 1}}\ dx = \sqrt{x^2 – 1} – \ln\left|x + \sqrt{x^2 – 1}\right| + C$$

$$\boxed{\sqrt{x^2 – 1} – \ln\left|x + \sqrt{x^2 – 1}\right| + C}$$

Find more clear step-by-step integral solutions and concise revision notes from Anand Classes perfect for JEE CBSE and competitive exam preparation.


NCERT Question 8: Evaluate the integral
$$\int \frac{x^2}{\sqrt{x^6 + a^6}}\ dx$$

Solution

$$\int \frac{x^2}{\sqrt{x^6 + a^6}}\ dx$$

Let $u = x^3$

So $du = 3x^2\ dx$ and $x^2\ dx = \dfrac{1}{3}\ du$

$$\int \frac{x^2}{\sqrt{x^6 + a^6}}\ dx = \frac{1}{3}\int \frac{du}{\sqrt{u^2 + (a^3)^2}}$$

$$= \frac{1}{3}\ln\left|u + \sqrt{u^2 + (a^3)^2}\right| + C$$

$$= \frac{1}{3}\ln\left|x^3 + \sqrt{x^6 + a^6}\right| + C$$

$$\boxed{\frac{1}{3}\ln\left|x^3 + \sqrt{x^6 + a^6}\right| + C}$$

Download concise exam focused notes from Anand Classes perfect for JEE CBSE and competitive exam preparation.


NCERT Question 9: Evaluate the integral
$$\int \frac{\sec^{2}x}{\sqrt{\tan^{2}x + 4}}\ dx$$

Solution

$$\int \frac{\sec^{2}x}{\sqrt{\tan^{2}x + 4}}\ dx$$

Let
$$u = \tan x$$

So
$$du = \sec^{2}x\ dx$$

Therefore

$$\int \frac{\sec^{2}x}{\sqrt{\tan^{2}x + 4}}\ dx = \int \frac{du}{\sqrt{u^{2} + 4}}$$

Write
$$\sqrt{u^{2} + 4} = \sqrt{u^{2} + 2^{2}}$$

Standard form:

$$\int \frac{du}{\sqrt{u^{2} + a^{2}}} = \ln\left|u + \sqrt{u^{2} + a^{2}}\right| + C$$

So

$$\int \frac{du}{\sqrt{u^{2} + 4}} = \ln\left|u + \sqrt{u^{2} + 2^2}\right| + C$$

Substitute back $u = \tan x$

$$= \ln\left|\tan x + \sqrt{\tan^{2}x + 4}\right| + C$$

$$\boxed{\ln\left|\tan x + \sqrt{\tan^{2}x + 4}\right| + C}$$

Access expertly designed revision notes and solved integrals from Anand Classes to strengthen preparation for JEE CBSE and competitive exams.


NCERT Question 10: Evaluate the integral
$$\int \frac{1}{\sqrt{x^2 + 2x + 2}}\ dx$$

Solution

$$\int \frac{1}{\sqrt{x^2 + 2x + 2}}\ dx$$

Complete the square:

$$x^2 + 2x + 2 = (x + 1)^2 + 1$$

So the integral becomes:

$$\int \frac{1}{\sqrt{(x + 1)^2 + 1}}\ dx$$

Let
$$u = x + 1$$
So
$$du = dx$$

Then

$$\int \frac{1}{\sqrt{u^2 + 1}}\ du = \ln\left|u + \sqrt{u^2 + 1}\right| + C$$

Substitute back $(u = x + 1)$:

$$= \ln\left|x + 1 + \sqrt{(x + 1)^2 + 1}\right| + C$$

$$\boxed{\ln\left|x + 1 + \sqrt{(x + 1)^2 + 1}\right| + C}$$

Strengthen your exam preparation with detailed step by step solutions and high quality revision notes from Anand Classes designed for JEE CBSE and competitive exams.


NCERT Question 11: Evaluate the integral
$$\int \frac{1}{9x^2 + 6x + 5}\ dx$$

Solution

$$\int \frac{1}{9x^2 + 6x + 5}\ dx$$

Complete the square

$$9x^2 + 6x + 5 = 9\left(x^2 + \frac{2}{3}x\right) + 5$$

$$= 9\left[\left(x + \frac{1}{3}\right)^2 – \frac{1}{9}\right] + 5$$

$$= 9\left(x + \frac{1}{3}\right)^2 – 1 + 5$$

$$= 9\left(x + \frac{1}{3}\right)^2 + 4$$

Let $$u = x + \frac{1}{3}$$ so $$du = dx$$

$$\int \frac{1}{9x^2 + 6x + 5}\ dx = \int \frac{1}{9u^2 + 4}\ du$$

$$= \frac{1}{9}\int \frac{1}{u^2 + \left(\dfrac{2}{3}\right)^2}\ du$$

Using $$\int \frac{1}{u^2 + a^2}\ du = \frac{1}{a}\tan^{-1}\left(\frac{u}{a}\right) + C$$ with $$a = \dfrac{2}{3}$$

$$\frac{1}{9}\cdot\frac{1}{\dfrac{2}{3}}\tan^{-1}\left(\frac{u}{\dfrac{2}{3}}\right) + C = \frac{1}{9}\cdot\frac{3}{2}\tan^{-1}\left(\frac{3u}{2}\right) + C$$

$$= \frac{1}{6}\tan^{-1}\left(\frac{3u}{2}\right) + C$$

Substitute back $$u = x + \frac{1}{3}$$

$$= \frac{1}{6}\tan^{-1}\left(\frac{3x + 1}{2}\right) + C$$

$$\boxed{\frac{1}{6}\tan^{-1}\left(\frac{3x + 1}{2}\right) + C}$$

Explore concise exam-focused notes and solved integrals from Anand Classes ideal for JEE CBSE and competitive exam preparation.


NCERT Question 12: Evaluate the integral
$$\int \frac{1}{\sqrt{7 – 6x – x^{2}}}\ dx$$

Solution

$$\int \frac{1}{\sqrt{7 – 6x – x^{2}}}\ dx$$

Rewrite the quadratic in proper form:

$$7 – 6x – x^{2} = -(x^{2} + 6x – 7)$$

Complete the square:

$$x^{2} + 6x – 7 = (x + 3)^{2} – 9 – 7 = (x + 3)^{2} – 16$$

Thus

$$7 – 6x – x^{2} = -[(x + 3)^{2} – 16] = 16 – (x + 3)^{2}$$

So the integral becomes:

$$\int \frac{1}{\sqrt{16 – (x + 3)^{2}}}\ dx$$

Let
$$u = x + 3$$
So
$$du = dx$$

Then

$$\int \frac{1}{\sqrt{16 – u^{2}}}\ du = \sin^{-1}\left(\frac{u}{4}\right) + C$$

Substitute back $(u = x + 3)$:

$$= \sin^{-1}\left(\frac{x + 3}{4}\right) + C$$

$$\boxed{\sin^{-1}\left(\frac{x + 3}{4}\right) + C}$$

Improve your preparation with clear, step by step integral solutions and high quality revision notes from Anand Classes designed for JEE CBSE and competitive exams.

NCERT Solutions Exercise 7.3 (Set-3) โžก๏ธ

๐Ÿ“š Buy Study Material & Join Our Coaching

For premium study materials specially designed for JEE, NEET, NDA, CDS, AFCAT, SSC Exams, visit our official study material portal:
๐Ÿ‘‰ https://publishers.anandclasses.co.in/

For JEE/NEET Notes : Visit https://anandclasses.in/

For NDA Notes : Visit https://nda.anandclasses.in/

For SSC Notes : Visit https://ssc.anandclasses.in/

For CDS, AFCAT Notes : Visit https://cds-afcat.anandclasses.in/

To enroll in our offline or online coaching programs, visit our coaching center website:
๐Ÿ‘‰ https://anandclasses.co.in/

๐Ÿ“ž Call us directly at: +91-94631-38669

๐Ÿ’ฌ WhatsApp Us Instantly

Need quick assistance or want to inquire about classes and materials?

๐Ÿ“ฒ Click below to chat instantly on WhatsApp:
๐Ÿ‘‰ Chat on WhatsApp

๐ŸŽฅ Watch Video Lectures

Get access to high-quality video lessons, concept explainers, and revision tips by subscribing to our official YouTube channel:
๐Ÿ‘‰ Neeraj Anand Classes โ€“ YouTube Channel

RELATED TOPICS