Integrals Exercise 7.2 NCERT Solutions Chapter-7 Class 12 Math PDF Free Download (Set-2)

โญโญโญโญโœฉ (4.8/5 from 67291 reviews)

NCERT Question 13: Find the Integral
$$\int \frac{x^2}{(2+3x^3)^3} dx$$

Solution:

$$\int \frac{x^2}{(2+3x^3)^3} dx$$

Let $2+3x^3 = t \implies 9x^2 dx = dt \implies dx = \dfrac{dt}{9x^2}$

Substitute in the integral:

$$
\int \frac{x^2}{(2+3x^3)^3} dx = \int \frac{x^2}{t^3} \cdot \frac{dt}{9x^2} = \frac{1}{9} \int t^{-3} dt
$$

Integrate:

$$
\frac{1}{9} \cdot \frac{t^{-2}}{-2} + C
$$

Simplify:

$$
-\frac{1}{18} t^{-2} + C
$$

Substitute back $(t = 2+3x^3)$:

$$
\boxed{-\frac{1}{18} (2+3x^3)^{-2} + C}
$$

Master substitution and negative power integrals with Anand Classes โ€” detailed NCERT solutions for CBSE, JEE and competitive exams.


NCERT Question 14: Find the Integral
$$\int \frac{1}{x(\log x)^m} dx \quad x>0$$

Solution:

$$\int \frac{1}{x(\log x)^m} dx $$

Let $\log x = t \implies \dfrac{1}{x} dx = dt$

Substitute in the integral:

$$
\int \frac{1}{x(\log x)^m} dx = \int \frac{dt}{t^m}
$$

Integrate:

$$
\int t^{-m} dt = \frac{t^{-m+1}}{-m+1} + C, \quad m \neq 1
$$

Substitute back $t = \log x$:

$$
\boxed{\frac{(\log x)^{-m+1}}{-m+1} + C, \quad m \neq 1}
$$

Learn logarithmic substitution integrals with Anand Classes โ€” complete NCERT solutions for CBSE, JEE and competitive exams.


NCERT Question 15: Find the Integral
$$\int \frac{x}{9-4x^2} dx$$

Solution:

$$\int \frac{x}{9-4x^2} dx$$

Let $9-4x^2 = t \implies -8x dx = dt \implies dx = \dfrac{dt}{-8x}$

Substitute in the integral:

$$
\int \frac{x}{9-4x^2} dx = \int \frac{x}{t} \cdot \frac{dt}{-8x} = -\frac{1}{8} \int \frac{1}{t} dt
$$

Integrate:

$$
-\frac{1}{8} \int \frac{1}{t} dt = -\frac{1}{8} \log|t| + C
$$

Substitute back $t = 9-4x^2$:

$$
\boxed{-\frac{1}{8} \log|9-4x^2| + C}
$$

Learn substitution and logarithmic integrals with Anand Classes โ€” step-by-step NCERT solutions for CBSE, JEE and competitive exams.


NCERT Question 16: Find the Integral
$$\int e^{2x+3} dx$$

Solution:

$$\int e^{2x+3} dx$$

Let $2x+3 = t \implies 2 dx = dt \implies dx = \dfrac{dt}{2}$

Substitute in the integral:

$$
\int e^{2x+3} dx = \int e^t \cdot \frac{dt}{2} = \frac{1}{2} \int e^t dt
$$

Integrate:

$$
\frac{1}{2} e^t + C
$$

Substitute back $t = 2x+3$:

$$
\boxed{\frac{1}{2} e^{2x+3} + C}
$$

Practice exponential substitution integrals with Anand Classes โ€” detailed NCERT solutions for CBSE, JEE and competitive exams.


NCERT Question 17: Find the Integral
$$\int \frac{x}{e^{x^2}} dx$$

Solution:

$$\int \frac{x}{e^{x^2}} dx$$

Let $x^2 = t \implies 2x dx = dt \implies dx = \dfrac{dt}{2x}$

Substitute in the integral:

$$
\int \frac{x}{e^{x^2}} dx = \frac{1}{2} \int e^{-t} dt
$$

Integrate:

$$
\frac{1}{2} (-e^{-t}) + C = -\frac{1}{2} e^{-t} + C
$$

Substitute back $t = x^2$:

$$
\boxed{-\frac{1}{2} e^{-x^2} + C}
$$

Strengthen your understanding of exponential integrals with Anand Classes โ€” ideal for JEE, CBSE, and board exam preparation.


NCERT Question 18: Find the Integral
$$\int \frac{e^{\tan^{-1}x}}{1+x^2} dx$$

Solution:

$$\int \frac{e^{\tan^{-1}x}}{1+x^2} dx$$

Let $\tan^{-1}x = t \implies \dfrac{1}{1+x^2} dx = dt$

Substitute in the integral:

$$
\int \frac{e^{\tan^{-1}x}}{1+x^2} dx = \int e^t dt
$$

Integrate:

$$
e^t + C
$$

Substitute back $t = \tan^{-1}x$:

$$
\boxed{e^{\tan^{-1}x} + C}
$$

Master integration techniques easily with Anand Classes โ€” trusted for CBSE, JEE, and board exam preparation.


NCERT Question 19: Find the Integral
$$\int \frac{e^{2x}-1}{e^{2x}+1} \; dx$$

Solution:

$$\int \frac{e^{2x}-1}{e^{2x}+1} \; dx$$

Dividing numerator and denominator by $e^x$:

$$
\frac{e^{2x}-1}{e^{2x}+1} = \frac{e^x – e^{-x}}{e^x + e^{-x}}
$$

Let $e^x + e^{-x} = t$, then, $(e^x – e^{-x}) dx = dt$

Substituting in the integral:

$$
\int \frac{e^x – e^{-x}}{e^x + e^{-x}} \; dx = \int \frac{dt}{t}
$$

Integrating:

$$
\log|t| + C
$$

Substitute back $t = e^x + e^{-x}$:

$$
\boxed{\log|e^x + e^{-x}| + C}
$$

Strengthen your integration skills with Anand Classes โ€” your trusted source for CBSE and JEE preparation with detailed step-by-step solutions and conceptual clarity.


NCERT Question 20: Find the Integral
$$\int \frac{e^{2x}-e^{-2x}}{e^{2x}+e^{-2x}} dx$$

Solution:

$$\int \frac{e^{2x}-e^{-2x}}{e^{2x}+e^{-2x}} dx$$

Let $e^{2x}+e^{-2x}=t$

Then $dt=2(e^{2x}-e^{-2x})dx$

So $(e^{2x}-e^{-2x})dx=\frac{1}{2}dt$

Therefore

$$
\int \frac{e^{2x}-e^{-2x}}{e^{2x}+e^{-2x}} dx
= \int \frac{1}{t}\cdot\frac{1}{2}dt
= \frac{1}{2}\int \frac{1}{t}dt
$$

$$
= \frac{1}{2}\log|t|+C
$$

Substitute back $t=e^{2x}+e^{-2x}$

$$
\boxed{\frac{1}{2}\log|e^{2x}+e^{-2x}|+C}
$$

Master integration techniques with Anand Classes perfect for CBSE and JEE preparation

โฌ…๏ธ NCERT Solutions Exercise 7.2 (Set-3) NCERT Solutions Exercise 7.2 (Set-1) โžก๏ธ

๐Ÿ“š Buy Study Material & Join Our Coaching

For premium study materials specially designed for JEE, NEET, NDA, CDS, AFCAT, SSC Exams, visit our official study material portal:
๐Ÿ‘‰ https://publishers.anandclasses.co.in/

For JEE/NEET Notes : Visit https://anandclasses.in/

For NDA Notes : Visit https://nda.anandclasses.in/

For SSC Notes : Visit https://ssc.anandclasses.in/

For CDS, AFCAT Notes : Visit https://cds-afcat.anandclasses.in/

To enroll in our offline or online coaching programs, visit our coaching center website:
๐Ÿ‘‰ https://anandclasses.co.in/

๐Ÿ“ž Call us directly at: +91-94631-38669

๐Ÿ’ฌ WhatsApp Us Instantly

Need quick assistance or want to inquire about classes and materials?

๐Ÿ“ฒ Click below to chat instantly on WhatsApp:
๐Ÿ‘‰ Chat on WhatsApp

๐ŸŽฅ Watch Video Lectures

Get access to high-quality video lessons, concept explainers, and revision tips by subscribing to our official YouTube channel:
๐Ÿ‘‰ Neeraj Anand Classes โ€“ YouTube Channel

RELATED TOPICS