Conic Sections (Ellipse) NCERT Solutions Exercise 10.3 Class 11 Math (Set-1)

โญโญโญโญโœฉ (4.9/5 from 35982 reviews)

NCERT Question 1 : Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $$\frac{x^2}{36}+\frac{y^2}{16}=1$$

Solution :
Given equation of ellipse:
$$\frac{x^2}{36}+\frac{y^2}{16}=1$$

Since denominator of $x^2/36$ is larger than that of $y^2/16$, the major axis is along the $x$-axis.

Compare with $\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1$.

$a^2=36,; b^2=16\Rightarrow a=6,; b=4$.

$c=\sqrt{a^2-b^2}=\sqrt{36-16}=\sqrt{20}=2\sqrt{5}$.

Foci: $(\pm c,0)=(\pm 2\sqrt{5},0)$.

Vertices: $(\pm a,0)=(\pm 6,0)$.

Length of major axis $=2a=12$.

Length of minor axis $=2b=8$.

Eccentricity $e=\dfrac{c}{a}=\dfrac{2\sqrt{5}}{6}=\dfrac{\sqrt{5}}{3}$.

Latus rectum $=\dfrac{2b^2}{a}=\dfrac{2\cdot 16}{6}=\dfrac{16}{3}$.


NCERT Question 2 : Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse
$$\frac{x^2}{4}+\frac{y^2}{25}=1$$

Solution
Denominator of $y^2/25$ is larger โ‡’ major axis along the $y$-axis.

$a^2=4,; b^2=25\Rightarrow a=2,; b=5$ (here $b>a$ so use $b$ for major).

$c=\sqrt{b^2-a^2}=\sqrt{25-4}=\sqrt{21}$.

Foci: $(0,\pm c)=(0,\pm\sqrt{21})$.

Vertices: $(0,\pm b)=(0,\pm 5)$.

Length of major axis $=2b=10$.

Length of minor axis $=2a=4$.

Eccentricity $e=\dfrac{c}{b}=\dfrac{\sqrt{21}}{5}$.

Latus rectum $=\dfrac{2a^2}{b}=\dfrac{2\cdot 4}{5}=\dfrac{8}{5}$.


NCERT Question 3 : Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse
$$\frac{x^2}{16}+\frac{y^2}{9}=1$$

Solution :
Major axis along $x$ (since $16>9$).
$a^2=16,; b^2=9\Rightarrow a=4,; b=3$.

$c=\sqrt{16-9}=\sqrt{7}$.

Foci: $(\pm\sqrt{7},0)$.

Vertices: $(\pm 4,0)$.

Length of major axis $=2a=8$.

Length of minor axis $=2b=6$.

Eccentricity $e=\dfrac{\sqrt{7}}{4}$.

Latus rectum $=\dfrac{2b^2}{a}=\dfrac{2\cdot 9}{4}=\dfrac{9}{2}$.


NCERT Question 4 : Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse
$$\frac{x^2}{25}+\frac{y^2}{100}=1$$

Solution :
Major axis along $y$ (since $100>25$).

$a^2=25,; b^2=100\Rightarrow a=5,; b=10$ (here $b$ is major).

$c=\sqrt{b^2-a^2}=\sqrt{100-25}=\sqrt{75}=5\sqrt{3}$.

Foci: $(0,\pm 5\sqrt{3})$.

Vertices: $(0,\pm 10)$.

Length of major axis $=2b=20$.

Length of minor axis $=2a=10$.

Eccentricity $e=\dfrac{c}{b}=\dfrac{5\sqrt{3}}{10}=\dfrac{\sqrt{3}}{2}$.

Latus rectum $=\dfrac{2a^2}{b}=\dfrac{2\cdot 25}{10}=5$.


NCERT Question 5 : Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse
$$\frac{x^2}{49}+\frac{y^2}{36}=1$$

Solution :
Major axis along $x$ ($49>36$).

$a^2=49,; b^2=36\Rightarrow a=7,; b=6$.

$c=\sqrt{49-36}=\sqrt{13}$.

Foci: $(\pm\sqrt{13},0)$.

Vertices: $(\pm 7,0)$.

Length of major axis $=2a=14$.

Length of minor axis $=2b=12$.

Eccentricity $e=\dfrac{\sqrt{13}}{7}$.

Latus rectum $=\dfrac{2b^2}{a}=\dfrac{2\cdot 36}{7}=\dfrac{72}{7}$.


NCERT Question 6 : Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse
$$\frac{x^2}{100}+\frac{y^2}{400}=1$$

Solution :
Major axis along $y$ ($400>100$).

$a^2=100,; b^2=400\Rightarrow a=10,; b=20$ (here $b$ major).

$c=\sqrt{400-100}=\sqrt{300}=10\sqrt{3}$.

Foci: $(0,\pm 10\sqrt{3})$.

Vertices: $(0,\pm 20)$.

Length of major axis $=2b=40$.

Length of minor axis $=2a=20$.

Eccentricity $e=\dfrac{c}{b}=\dfrac{10\sqrt{3}}{20}=\dfrac{\sqrt{3}}{2}$.

Latus rectum $=\dfrac{2a^2}{b}=\dfrac{2\cdot 100}{20}=10$.


NCERT Question 7 : Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $$36x^2+4y^2=144$$

Solution :
Equation given: $36x^2+4y^2=144$

Divide both sides by $144$ to get standard form:

$$\frac{x^2}{4}+\frac{y^2}{36}=1$$

Major axis along $y$ ($36>4$).

$a^2=4,; b^2=36\Rightarrow a=2,; b=6$ (here $b$ major).

$c=\sqrt{36-4}=\sqrt{32}=4\sqrt{2}$.

Foci: $(0,\pm 4\sqrt{2})$.

Vertices: $(0,\pm 6)$.

Length of major axis $=2b=12$.

Length of minor axis $=2a=4$.

Eccentricity $e=\dfrac{c}{b}=\dfrac{4\sqrt{2}}{6}=\dfrac{2\sqrt{2}}{3}$.

Latus rectum $=\dfrac{2a^2}{b}=\dfrac{2\cdot 4}{6}=\dfrac{4}{3}$.


NCERT Question 8 : Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $$16x^2+y^2=16$$

Solution :
Equation given: $16x^2+y^2=16$

Divide by $16$:
$$\frac{x^2}{1}+\frac{y^2}{16}=1$$

Major axis along $y$ ($16>1$).

$a^2=1,; b^2=16\Rightarrow a=1,; b=4$ (here $b$ major).

$c=\sqrt{16-1}=\sqrt{15}$.

Foci: $(0,\pm\sqrt{15})$.

Vertices: $(0,\pm 4)$.

Length of major axis $=2b=8$.

Length of minor axis $=2a=2$.

Eccentricity $e=\dfrac{\sqrt{15}}{4}$.

Latus rectum $=\dfrac{2a^2}{b}=\dfrac{2\cdot 1}{4}=\dfrac{1}{2}$.


NCERT Question 9 : Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $$4x^2+9y^2=36$$

Solution :
Equation given: $4x^2+9y^2=36$

Divide by $36$:
$$\frac{x^2}{9}+\frac{y^2}{4}=1$$

Major axis along $x$ ($9>4$).
$a^2=9,; b^2=4\Rightarrow a=3,; b=2$.

$c=\sqrt{9-4}=\sqrt{5}$.

Foci: $(\pm\sqrt{5},0)$.

Vertices: $(\pm 3,0)$.

Length of major axis $=2a=6$.

Length of minor axis $=2b=4$.

Eccentricity $e=\dfrac{\sqrt{5}}{3}$.

Latus rectum $=\dfrac{2b^2}{a}=\dfrac{2\cdot 4}{3}=\dfrac{8}{3}$.

Download detailed NCERT solutions by Anand Classes for Class 11 Maths, JEE Main, NDA, and CUET preparation.

โฌ…๏ธ Hyperbola NCERT Solutions Exercise 10.4 Ellipse NCERT Solutions Exercise 10.3 Set-2 โžก๏ธ

๐Ÿ“š Buy Study Material & Join Our Coaching

For premium study materials specially designed for JEE, NEET, NDA, CDS, AFCAT, SSC Exams, visit our official study material portal:
๐Ÿ‘‰ https://publishers.anandclasses.co.in/

For JEE/NEET Notes : Visit https://anandclasses.in/

For NDA Notes : Visit https://nda.anandclasses.in/

For SSC Notes : Visit https://ssc.anandclasses.in/

For CDS, AFCAT Notes : Visit https://cds-afcat.anandclasses.in/

To enroll in our offline or online coaching programs, visit our coaching center website:
๐Ÿ‘‰ https://anandclasses.co.in/

๐Ÿ“ž Call us directly at: +91-94631-38669

๐Ÿ’ฌ WhatsApp Us Instantly

Need quick assistance or want to inquire about classes and materials?

๐Ÿ“ฒ Click below to chat instantly on WhatsApp:
๐Ÿ‘‰ Chat on WhatsApp

๐ŸŽฅ Watch Video Lectures

Get access to high-quality video lessons, concept explainers, and revision tips by subscribing to our official YouTube channel:
๐Ÿ‘‰ Neeraj Anand Classes โ€“ YouTube Channel

RELATED TOPICS