Complex Numbers & Quadratic Equations NCERT Solutions free pdf download

โญโญโญโญ (4.1/5 from 100 reviews)

NCERT Solutions for Class 11 Maths Chapter 5 Complex Numbers and Quadratic Equations are prepared by the expert teachers at ANAND CLASSES. These NCERT Solutions of Maths help students in solving problems quickly, accurately and efficiently.

Exercise 5.1

Express each of the complex number given in the Exercises 1 to 10 in the form a + ib.

1. (5i)(-3i/5)

SOLUTION

5i ร— (-3i/5) = -3 ร— i2

Since, i2 = 1. Therefore,

-3 ร— i2 = -3 ร— (-1) = 3

(5i)(-3i/5) = 3 + i0

2. i9 + i19

SOLUTION

i9 + i19 = i(i2)4 + i(i2)9

Since, i2 = 1. Therefore,

i(i2)4 + i(i2)9 = i(-1)4 + i(-1)9

= i โ€“ i = 0

i9 + i19 = 0 + i0

3. i-39

SOLUTION

i-39 = 1/i39 = 1/i3.(i4)9

Since, i3 = -i and i4 = 1. Therefore,

= 1/i3.(i4)9 = 1/(-i)(1)

= 1/-i

Multiply and divide by i

1/-i ร— i/i

= i/i2

Since, i2 = -1. Therefore,

i/i2 = -i

i-39= 0 + i.1

4. 3(7 + i7) + i (7 + i7)

SOLUTION

3(7 + i7) + i (7 + i7) = 21 + i21 + i7 + i27

Since, i2 = -1. Therefore,

21 + i21 + i7 + i27

= 21 + i28 + (-1)7

= 21 โ€“ 7 + i28

= 14 + i28

3(7 + i7) + i (7 + i7) = 14 + i28

5. (1 โ€“ i) โ€“ ( -1 + i6)

SOLUTION

(1 โ€“ i) โ€“ ( -1 + i6) = 1 โ€“ i + 1 โ€“ i6

= 2 โ€“ i7

6. (1/5 + i2/5) โ€“ (4 + i5/2)

SOLUTION

(1/5 + i2/5) โ€“ (4 + i5/2) = 1/5 + i2/5 โ€“ 4 โ€“ i5/2

= 1/5 โ€“ 4 + i2/5 โ€“ i5/2

= -19/5 โ€“ i21/10

(1/5 + i2/5) โ€“ (4 + i5/2) = -19/5 โ€“ i21/10

7. [(1/3 + i7/3) + (4 + i1/3)] โ€“ (-4/3 + i)

SOLUTION

[(1/3 + i7/3) + (4 + i1/3)] โ€“ (-4/3 + i)

= [1/3 + i7/3 + 4 + i/3] + 4/3 โ€“ i

= 13/3 + i8/3 + 4/3 โ€“ i

= 17/3 + i5/3

[(1/3 + i7/3) + (4 + i1/3)] โ€“ (-4/3 + i) = 17/3 + i5/3

8. (1 โ€“ i)4

SOLUTION

(1 โ€“ i)4 = (1 โ€“ i)2(1 โ€“ i)2

= (1 + i2 โ€“ 2i)(1 + i2 โ€“ 2i)

Since, i2 = -1. Therefore,

(1 + i2 โ€“ 2i)(1 + i2 โ€“ 2i)

= (1 โ€“ 1 โ€“ 2i)2

= (-2i)2

= 4i2 = 4(-1) = -4

(1 โ€“ i)4 = -4 + i0

9. (1/3 + 3i)3

SOLUTION

(1/3 + 3i)3 = (1/3)3 + (3i)3 + 3(1/3)2(3i) + 3(3i)2(1/3)

= 1/27 + 27i3 + 9i(1/9) + 9i2

= 1/27 + 27i3 + i + 9i2

Since, i2 = -1 and i3 = -i. Therefore,

1/27 + 27i3 + 9i2 + i

= 1/27 โ€“ 27i โ€“ 9 + i

= 1/27 โ€“ 9 โ€“ 26i

= -242/27 โ€“ i26

(1/3 + 3i)3 = -242/27 โ€“ i26

10. (-2 โ€“ i1/3)3

SOLUTION

(-2 โ€“ i1/3)3 = (-2)3 + (-i/3)3 + 3(-2)(-i/3)2 + 3(-i/3)(-2)2

= -8 โ€“ i3/27 โ€“ 6(i2/9) โ€“ i(4)

= -8 โ€“ i3/27 โ€“ 2i2/3 โ€“ 4i

Since, i2 = -1 and i3 = -i. Therefore,

-8 โ€“ i3/27 โ€“ 2i2/3 โ€“ 4i

= -8 + i/27 + 2/3 โ€“ 4i

= 2/3 โ€“ 8 + i/27 โ€“ 4i

= -22/3 โ€“ 107i/27

(-2 โ€“ i1/3)3 = -22/3 โ€“ i107/27

Find the multiplicative inverse of each of the complex numbers given in the Exercises 11 to 13.

11. 4 โ€“ 3i

SOLUTION

Let 4 โ€“ 3i = z.

|z|2 = 42 + (-3)2 = 16 + 9 = 25

Multiplicative inverse of z is z-1.

z-1 = zฬ„/|z|2 = (4 + 3i)/25

= 4/25 + i3/25

12. โˆš5 + 3i

SOLUTION

Let โˆš5 โ€“ 3i = z.

|z|2 = (โˆš5)2 + (3)2 = 5 + 9 = 14

Multiplicative inverse of z is z-1.

z-1 = zฬ„/|z|2 = (โˆš5 โ€“ 3i)/14

= โˆš5/14 โ€“ i3/14

13. -i

SOLUTION

Let -i = z.

|z|2 = (-1)2 = 1

Multiplicative inverse of z is z-1.

z-1 = zฬ„/|z|2 = (i)/1

= i

14. Express the following expression in the form of a + ib :

(3 + iโˆš5) (3 โ€“ iโˆš5)/((โˆš3 + โˆš2i) โ€“ (โˆš3 โ€“ โˆš2i))

SOLUTION

(3 + iโˆš5) (3 โ€“ iโˆš5)/{(โˆš3 + โˆš2i) โ€“ (โˆš3 โ€“ โˆš2i)}

= {32 โ€“ (iโˆš5)2}/{โˆš3 + โˆš2i โ€“ โˆš3 + โˆš2i}

= (9 โ€“ 5i2)/(2โˆš2i)

Since, i2 = -1. Therefore,

(9 โ€“ 5i2)/(2โˆš2i)

= (9 + 5)/(2โˆš2i) = 14/2โˆš2i

= 7/โˆš2i

Multiply and divide by โˆš2i

7/โˆš2i ร— โˆš2i/โˆš2i

= 7iโˆš2/2i2

= -7iโˆš2/2

(3 + iโˆš5) (3 โ€“ iโˆš5)/{(โˆš3 + โˆš2i) โ€“ (โˆš3 โ€“ โˆš2i)} = 0 โ€“ i7โˆš2/2

Exercise 5.2

Find the modulus and the arguments of each of the complex numbers in Exercises 1 to 2.

1. z = -1 โ€“ iโˆš3

SOLUTION

Let -1 = r cos ฮธ and -โˆš3 = r sin ฮธ, where r is the modulus.

Square and add both:

(r cos ฮธ)2 + (r sin ฮธ)2 = (-1)2 + (-โˆš3)2

r2 cos2 ฮธ + r2 sin2 ฮธ = 1 + 3

r2 (cos2 ฮธ + sin2 ฮธ) = 4

r2 = 4 โ€ฆ (cos2 A + sin2 A = 1)

r = 2 as r > 0

r cos ฮธ = -1

2 cos ฮธ = -1

cos ฮธ = -1/2 = -cos ฯ€/3

r sin ฮธ = -โˆš3

2 sin ฮธ = -โˆš3

sin ฮธ = -โˆš3/2 = -sin ฯ€/3

sin ฮธ and cos ฮธ are both negative. This implies that ฮธ lies in quadrant III.

arg (z) = ฮธ = -(ฯ€ โ€“ ฯ€/3) = -2ฯ€/3

Hence, modulus of the given complex number = 2 and argument of given complex number is -2ฯ€/3

2. z = -โˆš3 + i

SOLUTION

Let -โˆš3 = r cos ฮธ and 1 = r sin ฮธ, where r is the modulus.

Square and add both:

(r cos ฮธ)2 + (r sin ฮธ)2 = (-โˆš3)2 + (1)2

r2 cos2 ฮธ + r2 sin2 ฮธ = 3 + 1

r2 (cos2 ฮธ + sin2 ฮธ) = 4

r2 = 4 โ€ฆ (cos2 A + sin2 A = 1)

r = 2 as r > 0

r cos ฮธ = -โˆš3

2 cos ฮธ = -โˆš3

cos ฮธ = -โˆš3/2 = -cos ฯ€/6

r sin ฮธ = 1

2 sin ฮธ = 1

sin ฮธ = 1/2 = sin ฯ€/6

sin ฮธ is positive while cos ฮธ is negative. This implies that ฮธ lies in quadrant II.

arg (z) = ฮธ = ฯ€ โ€“ ฯ€/6 = 5ฯ€/3

Hence, modulus of the given complex number = 2 and argument of given complex number is 5ฯ€/3

Convert each of the complex numbers given in Exercises 3 to 8 in the polar form:

3. 1 โ€“ i

SOLUTION

Let 1 = r cos ฮธ and -1 = r sin ฮธ, where r is the modulus.

Square and add both:

(r cos ฮธ)2 + (r sin ฮธ)2 = (1)2 + (-1)2

r2 cos2 ฮธ + r2 sin2 ฮธ = 1 + 1

r2 (cos2 ฮธ + sin2 ฮธ) = 2

r2 = 2 โ€ฆ (cos2 A + sin2 A = 1)

r = โˆš2 as r > 0

r cos ฮธ = 1

โˆš2 cos ฮธ = 1

cos ฮธ = 1/โˆš2 = cos ฯ€/4

r sin ฮธ = -1

โˆš2 sin ฮธ = -1

sin ฮธ = -1/โˆš2 = -sin ฯ€/4

sin ฮธ is negative while cos ฮธ is positive. This implies that ฮธ lies in quadrant IV.

ฮธ = -ฯ€/4

Polar form of the given complex number will be

1 โ€“ i = r cos ฮธ + i r sin ฮธ

= โˆš2 cos (-ฯ€/4) + iโˆš2 sin (-ฯ€/4)

4. -1 + i

SOLUTION

Let -1 = r cos ฮธ and 1 = r sin ฮธ, where r is the modulus.

Square and add both:

(r cos ฮธ)2 + (r sin ฮธ)2 = (-1)2 + (1)2

r2 cos2 ฮธ + r2 sin2 ฮธ = 1 + 1

r2 (cos2 ฮธ + sin2 ฮธ) = 2

r2 = 2 โ€ฆ (cos2 A + sin2 A = 1)

r = โˆš2 as r > 0

r cos ฮธ = -1

โˆš2 cos ฮธ = -1

cos ฮธ = -1/โˆš2 = -cos ฯ€/4

r sin ฮธ = 1

โˆš2 sin ฮธ = 1

sin ฮธ = 1/โˆš2 = sin ฯ€/4

sin ฮธ is positive while cos ฮธ is negative. This implies that ฮธ lies in quadrant II.

ฮธ = ฯ€ โ€“ ฯ€/4 = 3ฯ€/4

Polar form of the given complex number will be

-1 + i = r cos ฮธ + i r sin ฮธ

= โˆš2 cos (3ฯ€/4) + iโˆš2 sin (3ฯ€/4)

5. -1 โ€“ i

SOLUTION

Let -1 = r cos ฮธ and -1 = r sin ฮธ, where r is the modulus.

Square and add both:

(r cos ฮธ)2 + (r sin ฮธ)2 = (-1)2 + (-1)2

r2 cos2 ฮธ + r2 sin2 ฮธ = 1 + 1

r2 (cos2 ฮธ + sin2 ฮธ) = 2

r2 = 2 โ€ฆ (cos2 A + sin2 A = 1)

r = โˆš2 as r > 0

r cos ฮธ = -1

โˆš2 cos ฮธ = -1

cos ฮธ = -1/โˆš2 = -cos ฯ€/4

r sin ฮธ = -1

โˆš2 sin ฮธ = -1

sin ฮธ = -1/โˆš2 = -sin ฯ€/4

sin ฮธ and cos ฮธ are both negative. This implies that ฮธ lies in quadrant III.

ฮธ = -(ฯ€ โ€“ ฯ€/4) = -3ฯ€/4

Polar form of the given complex number will be

-1 โ€“ i = r cos ฮธ + i r sin ฮธ

= โˆš2 cos (-3ฯ€/4) + iโˆš2 sin (-3ฯ€/4)

6. -3

SOLUTION

-3 = -3 + i0

Let -3 = r cos ฮธ and 0 = r sin ฮธ, where r is the modulus.

Square and add both:

(r cos ฮธ)2 + (r sin ฮธ)2 = (-3)2 + (0)2

r2 cos2 ฮธ + r2 sin2 ฮธ = 9 + 0

r2 (cos2 ฮธ + sin2 ฮธ) = 9

r2 = 9 โ€ฆ (cos2 A + sin2 A = 1)

r = 3 as r > 0

r cos ฮธ = -3

3 cos ฮธ = -3

cos ฮธ = -1 = -cos 0

r sin ฮธ = 0

3 sin ฮธ = 0

sin ฮธ = 0 = sin 0

sin ฮธ is positive and cos ฮธ is negative. This implies that ฮธ lies in quadrant II.

ฮธ = ฯ€ โ€“ 0 = ฯ€

Polar form of the given complex number will be

-3 = r cos ฮธ + i r sin ฮธ

= 3 cos (ฯ€) + i3 sin (ฯ€)

7. โˆš3 + i

SOLUTION

Let โˆš3 = r cos ฮธ and 1 = r sin ฮธ, where r is the modulus.

Square and add both:

(r cos ฮธ)2 + (r sin ฮธ)2 = (โˆš3)2 + (1)2

r2 cos2 ฮธ + r2 sin2 ฮธ = 3 + 1

r2 (cos2 ฮธ + sin2 ฮธ) = 4

r2 = 4 โ€ฆ (cos2 A + sin2 A = 1)

r = 2 as r > 0

r cos ฮธ = โˆš3

2 cos ฮธ = โˆš3

cos ฮธ = โˆš3/2 = cos ฯ€/6

r sin ฮธ = 1

2 sin ฮธ = 1

sin ฮธ = 1/2 = sin ฯ€/6

sin ฮธ and cos ฮธ are both positive. This implies that ฮธ lies in quadrant I.

ฮธ = ฯ€/6

Polar form of the given complex number will be

โˆš3 + i = r cos ฮธ + i r sin ฮธ

= 2 cos (ฯ€/6) + i2 sin (ฯ€/6)

8. i

SOLUTION

i = 0 + i

Let 0 = r cos ฮธ and 1 = r sin ฮธ, where r is the modulus.

Square and add both:

(r cos ฮธ)2 + (r sin ฮธ)2 = (0)2 + (1)2

r2 cos2 ฮธ + r2 sin2 ฮธ = 0 + 1

r2 (cos2 ฮธ + sin2 ฮธ) = 1

r2 = 1 โ€ฆ (cos2 A + sin2 A = 1)

r = 1 as r > 0

r cos ฮธ = 0

1 cos ฮธ = 0

cos ฮธ = 0 = cos ฯ€/2

r sin ฮธ = 1

1 sin ฮธ = 1

sin ฮธ = 1 = sin ฯ€/2

sin ฮธ and cos ฮธ are both positive. This implies that ฮธ lies in quadrant I.

ฮธ = ฯ€/2

Polar form of the given complex number will be

i = r cos ฮธ + i r sin ฮธ

= 1 cos (ฯ€/2) + i1 sin (ฯ€/2)

= cos (ฯ€/2) + i sin (ฯ€/2)

Exercise 5.3

Solve each of the following equations:

1. x2 + 3 = 0

SOLUTION

On comparing the given quadratic equation to ax2 + bx + c = 0, we get

a = 1, b = 0 and c = 3

Discriminant = b2 โ€“ 4ac = 02 โ€“ 4(1)(3) = 0 โ€“ 12 = -12

x = (-b ยฑ โˆšD)/2a = ยฑโˆš-12/2 = ยฑโˆš12i/2 as i = โˆš-1

x = ยฑ2โˆš3i/2 = ยฑโˆš3i

Hence, x = โˆš3i or -โˆš3i.

2. 2x2 + x + 1 = 0

SOLUTION

On comparing the given quadratic equation to ax2 + bx + c = 0, we get

a = 2, b = 1 and c = 1

Discriminant = b2 โ€“ 4ac = 12 โ€“ 4(2)(1) = 1 โ€“ 8 = -7

x = (-b ยฑ โˆšD)/2a

= (-1 ยฑ โˆš-7)/2(2) = (-1 ยฑ โˆš7i)/4 as i = โˆš-1

x = (-1 ยฑ โˆš7i)/4

Hence, x = (-1 + โˆš7i)/4 or (-1 โ€“ โˆš7i)/4.

3. x2 + 3x + 9 = 0

SOLUTION

On comparing the given quadratic equation to ax2 + bx + c = 0, we get

a = 1, b = 3 and c = 9

Discriminant = b2 โ€“ 4ac = 32 โ€“ 4(1)(9) = 9 โ€“ 36 = -27

x = (-b ยฑ โˆšD)/2a

= (-3 ยฑ โˆš-27)/2(1) = (-3 ยฑ โˆš27i)/2 as i = โˆš-1

= (-3 ยฑ 3โˆš3i)/2

x = 3(-1 ยฑ โˆš3i)/2

Hence, x = 3(-1 + โˆš3i)/2 or (-1 โ€“ โˆš3i)/2.

4. -x2 + x โ€“ 2 = 0

SOLUTION

On comparing the given quadratic equation to ax2 + bx + c = 0, we get

a = -1, b = 1 and c = -2

Discriminant = b2 โ€“ 4ac = 12 โ€“ 4(-1)(-2) = 1 โ€“ 8 = -7

x = (-b ยฑ โˆšD)/2a

= (-1 ยฑ โˆš-7)/2(-1) = -(-1 ยฑ โˆš7i)/2 as i = โˆš-1

x = -(-1 ยฑ โˆš7i)/2

Hence, x = -(-1 + โˆš7i)/2 or -(-1 โ€“ โˆš7i)/2.

5. x2 + 3x + 5 = 0

SOLUTION

On comparing the given quadratic equation to ax2 + bx + c = 0, we get

a = 1, b = 3 and c = 5

Discriminant = b2 โ€“ 4ac = 32 โ€“ 4(1)(5) = 9 โ€“ 20 = -11

x = (-b ยฑ โˆšD)/2a

= (-3 ยฑ โˆš-11)/2(1) = (-3 ยฑ โˆš11i)/2 as i = โˆš-1

x = (-3 ยฑ โˆš11i)/2

Hence, x = (-3 + โˆš11i)/2 or (-3 โ€“ โˆš11i)/2.

6. x2 โ€“ x + 2 = 0

SOLUTION

On comparing the given quadratic equation to ax2 + bx + c = 0, we get

a = 1, b = -1 and c = 2

Discriminant = b2 โ€“ 4ac = (-1)2 โ€“ 4(1)(2) = 1 โ€“ 8 = -7

x = (-b ยฑ โˆšD)/2a

= (1 ยฑ โˆš-7)/2(1) = (1 ยฑ โˆš7i)/2 as i = โˆš-1

x = (1 ยฑ โˆš7i)/2

Hence, x = (1 + โˆš7i)/2 or (1 โ€“ โˆš7i)/2.

7. โˆš2x2 + x + โˆš2 = 0

SOLUTION

On comparing the given quadratic equation to ax2 + bx + c = 0, we get

a = โˆš2, b = 1 and c = โˆš2

Discriminant = b2 โ€“ 4ac = 12 โ€“ 4(โˆš2)(โˆš2) = 1 โ€“ 8 = -7

x = (-b ยฑ โˆšD)/2a

= (-1 ยฑ โˆš-7)/2(โˆš2) = (-1 ยฑ โˆš7i)/2โˆš2 as i = โˆš-1

x = (-1 ยฑ โˆš7i)/2โˆš2

Hence, x = (-1 + โˆš7i)/2โˆš2 or (-1 โ€“ โˆš7i)/2โˆš2.

8. โˆš3x2 โ€“ โˆš2 + 3โˆš3 = 0

SOLUTION

On comparing the given quadratic equation to ax2 + bx + c = 0, we get

a = โˆš3, b = -โˆš2 and c = 3โˆš3

Discriminant = b2 โ€“ 4ac = (-โˆš2)2 โ€“ 4(โˆš3)(3โˆš3) = 2 โ€“ 36 = -34

x = (-b ยฑ โˆšD)/2a

= (-โˆš2 ยฑ โˆš-34)/2(โˆš3) = (-โˆš2 ยฑ โˆš34i)/2โˆš3 as i = โˆš-1

x = (-โˆš2 ยฑ โˆš34i)/2โˆš3

Hence, x = (-โˆš2 + โˆš34i)/2โˆš3 or (-โˆš2 โ€“ โˆš34i)/2โˆš3.

9. x2 + x + 1/โˆš2 = 0

SOLUTION

Multiply both sides of the given equation by โˆš2:

โˆš2x2 + โˆš2x + 1 = 0

On comparing the obtained quadratic equation to ax2 + bx + c = 0, we get

a = โˆš2, b = โˆš2 and c = 1

Discriminant = b2 โ€“ 4ac = (โˆš2)2 โ€“ 4(โˆš2)(1) = 2 โ€“ 4โˆš2 = 2(1 โ€“ 2โˆš2)

x = (-b ยฑ โˆšD)/2a

= [-โˆš2 ยฑ โˆš(2(1 โ€“ 2โˆš2))]/2(โˆš2)

= (-โˆš2 ยฑ โˆš2โˆši(2โˆš2-1)/2โˆš2 as i = โˆš-1

x = (-1 ยฑ โˆš(2โˆš2 โ€“ 1)i)/2

Hence, x = (-1 + โˆš(2โˆš2 โ€“ 1)i)/2 or (-1 โ€“ โˆš(2โˆš2 โ€“ 1)i)/2.

10. x2 + x/โˆš2 + 1 = 0

SOLUTION

Multiply both sides of the given equation by โˆš2:

โˆš2x2 + x + โˆš2 = 0

On comparing the obtained quadratic equation to ax2 + bx + c = 0, we get

a = โˆš2, b = 1 and c = โˆš2

Discriminant = b2 โ€“ 4ac = (1)2 โ€“ 4(โˆš2)(โˆš2) = 1 โ€“ 8 = -7

x = (-b ยฑ โˆšD)/2a

= [-1 ยฑ โˆš-7]/2(โˆš2)

= (-1 ยฑ โˆš7i)/2โˆš2 as i = โˆš-1

x = (-1 ยฑ โˆš7i)/2

Hence, x = (-1 + โˆš7i)/2 or (-1 โ€“ โˆš7i)/2.

Miscellaneous Exercise

1. Evaluate: [i18 + (1/i)25]3.

SOLUTION

[i18 + (1/i)25]3

= [i4(4) + 2 + 1/i4(6) + 1 ]3

= [(i4)4.i2 + 1/(i4)6.i1 ]3

Now, i4 = 1 and i2 = -1.

= [(1)4.(-1) + 1/(1)6.i]3

= [-1 + 1/i]3

Multiple and divide 1/i by i.

= [-1 + 1/i ร— i/i]3

= [-1 + i/i2]3

= (-1 + i/(-1))3

= (-1 โ€“ i)3

= (-1)3 + (-i)3 + 3(-1)2(-i) + 3(-i)2(-1)

= -1 โ€“ i3 โ€“ 3i โ€“ 3i2

= -1 โ€“ (-1)i โ€“ 3i โ€“ 3(-1)

= -1 + i โ€“ 3i + 3

= 2 โ€“ 2i

2. For any two complex numbers z1 and z2, prove that

Re (z1 z2) = Re z1 Re z2 โ€“ Imz1 Imz2.

SOLUTION

Let there be two complex numbers z1 = x1 + iy1 and z2 = x2 + iy2.

z1 z2 = (x1 + iy1)(x2 + iy2)

= x1x2 + ix2y1 + ix1y2 + i2y1y2

= x1x2 โ€“ y1y2 + i(x2y1 + x1y2) โ€ฆ as i2 = -1

Re (z1 z2) = x1x2 โ€“ y1y2

Re z1 Re z2 = (x1) (x2)

Imz1 Imz2 = (y1) (y2)

Re z1 Re z2 โ€“ Imz1 Imz2 = x1x2 โ€“ y1y2

Hence, proved that Re (z1 z2) = Re z1 Re z2 โ€“ Imz1 Imz2.

3. Reduce to standard form.

(1/(1 โ€“ 4i) โ€“ 2/(i + 1)) (3 โ€“ 4i)/(5 + i)

SOLUTION

{1/(1 โ€“ 4i) โ€“ 2/(i + 1)} (3 โ€“ 4i)/(5 + i)

= {(i + 1 โ€“ 2 + 8i)/(1 โ€“ 4i)(i + 1)} ร— (3 โ€“ 4i)/(5 + i)

= {(-1 + 9i)/(i โ€“ 4i2 โ€“ 4i + 1)} ร— (3 โ€“ 4i)/(5 + i)

= {(-1 + 9i)/(-4(-1) โ€“ 3i + 1)} ร— (3 โ€“ 4i)/(5 + i)

= {(-1 + 9i)/(5 โ€“ 3i)} ร— (3 โ€“ 4i)/(5 + i)

= {(-1 + 9i)(3 โ€“ 4i)}/(5 โ€“ 3i)(5 + i)

= (-3 + 4i + 27i โ€“ 36i2)/(25 + 5i โ€“ 15i โ€“ 3i2)

= (-3 + 31i โ€“ 36(-1))/(25 โ€“ 10i โ€“ 3(-1))

= (-3 + 31i + 36)/(25 โ€“ 10i + 3)

= (33 + 31i)/(28 โ€“ 10i)

= (33 + 31i)/2(14 โ€“ 5i)

Multiply and divide by 14 + 5i

(33 + 31i)/2(14 โ€“ 5i) ร— (14 + 5i)/(14 + 5i)

= (33 + 31i)(14 + 5i)/2(142โ€“ 52i2)

= (462 + 434i + 165i + 155i2)/2(196 โ€“ 25i2)

= (462 + 599i + 155(-1))/(392 โ€“ 50i2)

= (462 โ€“ 155 + 599i)/(392 โ€“ 50(-1))

= (307 + 599i)/(392 + 50)

= (307 + 599i)/(442)

= 307/442 + i599/442

Hence, the standard form will be 307/442 + i599/442.

4. If x โ€“ iy = โˆš(a โ€“ ib)/โˆš(c โ€“ id) prove that (x2 + y2)2 = (a2 + b2)/(c2 + d2).

SOLUTION

x โ€“ iy = โˆš(a โ€“ ib)/โˆš(c โ€“ id)

Multiply the numerator and denominator by c + id

Ncert solutions class 11th maths chapter 5: complex numbers and quadratic equations

Square both sides

Ncert solutions class 11th maths chapter 5: complex numbers and quadratic equations

Comparing real and imaginary parts on both sides, we get:

Ncert solutions class 11th maths chapter 5: complex numbers and quadratic equations

5. Convert the following into the polar form:

(i) (1 + 7i)/(2 โ€“ i)2

SOLUTION

(1 + 7i)/(2 โ€“ i)2

= (1 + 7i)/(22 + i2 โ€“ 4i)

= (1 + 7i)/(4 โ€“ 1 โ€“ 4i)

= (1 + 7i)/(3 โ€“ 4i)

Multiply and divide by (3 + 4i)

(1 + 7i)/(3 โ€“ 4i) ร— (3 + 4i)/(3 + 4i)

= (1 + 7i)(3 + 4i)/(32 โ€“ 42i2)

= (3 + 21i + 4i + 28i2)/(9 โ€“ 16i2)

= (3 + 25i + 28(-1))/(9 โ€“ 16(-1))

= (3 + 25i โ€“ 28)/(9 + 16)

= (-25 + 25i)/25

= 25(-1 + i)/25

= -1 + i

Let -1 = r cos ฮธ and 1 = r sin ฮธ, where r is the modulus.

Square and add both:

(r cos ฮธ)2 + (r sin ฮธ)2 = (-1)2 + (1)2

r2 cos2 ฮธ + r2 sin2 ฮธ = 1 + 1

r2 (cos2 ฮธ + sin2 ฮธ) = 2

r2 = 2 โ€ฆ (cos2 A + sin2 A = 1)

r = โˆš2 as r > 0

r cos ฮธ = -1

โˆš2 cos ฮธ = -1

cos ฮธ = -1/โˆš2 = -cos ฯ€/4

r sin ฮธ = 1

โˆš2 sin ฮธ = 1

sin ฮธ = 1/โˆš2 = sin ฯ€/4

sin ฮธ is positive while cos ฮธ is negative. This implies that ฮธ lies in quadrant II.

ฮธ = ฯ€ โ€“ ฯ€/4 = 3ฯ€/4

Polar form of the given complex number will be

(1 + 7i)/(2 โ€“ i)2 = -1 + i = r cos ฮธ + i r sin ฮธ

= โˆš2 cos (3ฯ€/4) + iโˆš2 sin (3ฯ€/4)

(ii) (1 + 3i)/(1 โ€“ 2i)

SOLUTION

(1 + 3i)/(1 โ€“ 2i)

Multiply and divide by 1 + 2i

(1 + 3i)/(1 โ€“ 2i) ร— (1 + 2i)/(1 + 2i)

= (1 + 3i)(1 + 2i)/(12 โ€“ 22i2)

= (1 + 3i + 2i + 6i2)/(1 โ€“ 4i2)

= (1 + 5i + 6(-1))/(1 โ€“ 4(-1))

= (1 + 5i โ€“ 6)/(1 + 4)

= (-5 + 5i)/5

= 5(-1 + i)/5

= -1 + i

Let -1 = r cos ฮธ and 1 = r sin ฮธ, where r is the modulus.

Square and add both:

(r cos ฮธ)2 + (r sin ฮธ)2 = (-1)2 + (1)2

r2 cos2 ฮธ + r2 sin2 ฮธ = 1 + 1

r2 (cos2 ฮธ + sin2 ฮธ) = 2

r2 = 2 โ€ฆ (cos2 A + sin2 A = 1)

r = โˆš2 as r > 0

r cos ฮธ = -1

โˆš2 cos ฮธ = -1

cos ฮธ = -1/โˆš2 = -cos ฯ€/4

r sin ฮธ = 1

โˆš2 sin ฮธ = 1

sin ฮธ = 1/โˆš2 = sin ฯ€/4

sin ฮธ is positive while cos ฮธ is negative. This implies that ฮธ lies in quadrant II.

ฮธ = ฯ€ โ€“ ฯ€/4 = 3ฯ€/4

Polar form of the given complex number will be

(1 + 7i)/(2 โ€“ i)2 = -1 + i = r cos ฮธ + i r sin ฮธ

= โˆš2 cos (3ฯ€/4) + iโˆš2 sin (3ฯ€/4)

Solve each of the equation in Exercises 6 to 9.

6. 3x2 โ€“ 4x + 20/3 = 0

SOLUTION

Multiply both sides of the given equation by 3:

9x2 โ€“ 12x + 20 = 0

On comparing the obtained quadratic equation to ax2 + bx + c = 0, we get

a = 9, b = -12 and c = 20

Discriminant = b2 โ€“ 4ac = (-12)2 โ€“ 4(9)(20) = 144 โ€“ 720 = -576

x = (-b ยฑ โˆšD)/2a

= [-(-12) ยฑ โˆš-576]/2(9)

= (12 ยฑ โˆš576i)/18 as i = โˆš-1

= (12 ยฑ 24i)/18

= 6(2 ยฑ 4i)/18

= (2 ยฑ 4i)/3

x = (2 ยฑ 4i)/3

Hence, x = (2 + 4i)/3 or (2 โ€“ 4i)/3.

7. x2 โ€“ 2x + 3/2 = 0

SOLUTION

Multiply both sides of the given equation by 2:

2x2 โ€“ 4x + 3 = 0

On comparing the obtained quadratic equation to ax2 + bx + c = 0, we get

a = 2, b = -4 and c = 3

Discriminant = b2 โ€“ 4ac = (-4)2 โ€“ 4(2)(3) = 16 โ€“ 24 = -8

x = (-b ยฑ โˆšD)/2a

= [-(-4) ยฑ โˆš-8]/2(2)

= (4 ยฑ โˆš8i)/4 as i = โˆš-1

= (4 ยฑ 2โˆš2i)/4

= 2(2 ยฑ โˆš2i)/4

= (2 ยฑ โˆš2i)/2

x = (2 ยฑ โˆš2i)/2

Hence, x = (2 + โˆš2i)/2 or (2 โ€“ โˆš2i)/2.

8. 27x2 โ€“ 10x + 1 = 0

SOLUTION

On comparing the obtained quadratic equation to ax2 + bx + c = 0, we get

a = 27, b = -10 and c = 1

Discriminant = b2 โ€“ 4ac = (-10)2 โ€“ 4(27)(1) = 100 โ€“ 108 = -8

x = (-b ยฑ โˆšD)/2a

= [-(-10) ยฑ โˆš-8]/2(27)

= (10 ยฑ โˆš8i)/54 as i = โˆš-1

= (10 ยฑ 2โˆš2i)/54

= 2(5 ยฑ โˆš2i)/54

= (5 ยฑ โˆš2i)/27

x = (5 ยฑ โˆš2i)/27

Hence, x = (5 + โˆš2i)/27 or (5 โ€“ โˆš2i)/27.

9. 21x2 โ€“ 28x + 10 = 0

SOLUTION

On comparing the obtained quadratic equation to ax2 + bx + c = 0, we get

a = 21, b = -28 and c = 10

Discriminant = b2 โ€“ 4ac = (-28)2 โ€“ 4(21)(10) = 784 โ€“ 840 = -56

x = (-b ยฑ โˆšD)/2a

= [-(-28) ยฑ โˆš-56]/2(21)

= (28 ยฑ โˆš56i)/42 as i = โˆš-1

= (28 ยฑ 2โˆš14i)/42

= 2(14 ยฑ โˆš14i)/42

= (14 ยฑ โˆš14i)/21

x = (14 ยฑ โˆš14i)/21

Hence, x = (14 + โˆš14i)/21 or (14 โ€“ โˆš14i)/21.

10. If z1 = 2 โ€“ i, z2 = 1 + i, find |(z1 + z2 + 1)/(z1 โ€“ z2 + 1)|.

SOLUTION

|(z1 + z2 + 1)/(z1 โ€“ z2 + 1)|

= |(2 โ€“ i + 1 + i + 1)/(2 โ€“ i โ€“ 1 โ€“ i + 1)|

= |(2 + 2)/(2 โ€“ 2i)|

= |2(2)/2(1 โ€“ i)|

= |2/(1 โ€“ i)|

Multiply and divide by 1 + i

|2/(1 โ€“ i) ร— (1 + i)/(1 + i)|

= |2(1 + i)/(12 โ€“ i2)|

= |2(1 + i)/(12 โ€“ (-1))|

= |2(1 + i)/2|

= |1 + i| =|1 + 1i|

= โˆš(12 + 12)

= โˆš(1 + 1) = โˆš2

Hence, |(z1 + z2 + 1)/(z1 โ€“ z2 + 1)| = โˆš2.

11. If a + ib = (x + i)2/(2x2 + 1), prove that a2 + b2 = (x2 + 1)2/(2x2 + 1)2.

SOLUTION

a + ib = (x + i)2/(2x2 + 1)

= (x2 + i + 2ix)/(2x2 + 1)

= (x2 + (-1) + 2ix)/(2x2 + 1)

= (x2โ€“ 1)/(2x2 + 1) + 2ix/(2x2 + 1)

Compare the real and imaginary parts on both sides

a = (x2 โ€“ 1)/(2x2 + 1) AND b = 2x/(2x2 + 1)

Square both sides

a2 = [(x2 โ€“ 1)/(2x2 + 1)]2 AND b2 = [2x/(2x2 + 1)]2

Add both equations

a2 + b2 = [(x2 โ€“ 1)/(2x2 + 1)]2 + [2x/(2x2 + 1)]2

= {x4 + 1 โ€“ 2x2 + 4x2}/(2x2 + 1)2

= {x4 + 1 + 2x2}/(2x2 + 1)2

= {(x2)2 + 12 + 2(1)(x2)}/(2x2 + 1)2

= (x2 + 1)2/(2x2 + 1)2

Hence, proved.

12. Let z1 = 2 โ€“ i, z2 = -2 + i. Find

(i) Re (z1z2/zฬ„1), (ii) Im (1/z1zฬ„2).

SOLUTION

(i) z1z2 = (2 โ€“ i)(-2 + i)

= -4 + 2i + 2i โ€“ i2

= -4 + 4i โ€“ (-1)

= -4 + 1 + 4i

= -3 + 4i

zฬ„1 = 2 + i

z1z2/zฬ„1 = (-3 + 4i)/(2 + i)

Multiply the numerator and denominator by 2 โ€“ i

z1z2/zฬ„1 = (-3 + 4i)/(2 + i) ร— (2 โ€“ i)/(2 โ€“ i)

= (-3 + 4i)(2 โ€“ i)/(22 โ€“ i2)

= (-6 + 8i + 3i โ€“ 4i2)/(4 โ€“ (-1))

= (-6 + 11i โ€“ 4(-1))/(4 + 1)

= (-6 + 11i + 4)/5

= (-2 + 11i)/5

= -2/5 + i11/5

Re (z1z2/zฬ„1) = -2/5

(ii) z1zฬ„1 = (2 โ€“ i)(2 + i) = 4 โ€“ i2 = 4 โ€“ (-1)

= 4 + 1 = 5

1/z1zฬ„1 = 1/5 + 0i

Im (1/z1zฬ„1) = 0

13. Find the modulus and argument of the complex number (1 + 2i)/(1 โ€“ 3i).

SOLUTION

Let z = (1 + 2i)/(1 โ€“ 3i).

Multiple and divide by 1 + 3i

z = (1 + 2i)/(1 โ€“ 3i) ร— (1 + 3i)/(1 + 3i)

= (1 + 2i)(1 + 3i)/(12 โ€“ 92i2)

= (1 + 2i + 3i + 6i2)/(1 โ€“ 9(-1))

= (1 + 5i + 6(-1))/(1 + 9)

= (-5 + 5i)/10

= 5(-1 + i)/10

= (-1 + i)/2

Let -1/2 = r cos ฮธ and 1/2 = r sin ฮธ, where r is the modulus.

Square and add both:

(r cos ฮธ)2 + (r sin ฮธ)2 = (-1/2)2 + (1/2)2

r2 cos2 ฮธ + r2 sin2 ฮธ = 1/4 + 1/4

r2 (cos2 ฮธ + sin2 ฮธ) = 1/2

r2 = 1/2 โ€ฆ (cos2 A + sin2 A = 1)

r = 1/โˆš2 as r > 0

r cos ฮธ = -1/2

1/โˆš2 cos ฮธ = -1/2

cos ฮธ = -1/โˆš2 = -cos ฯ€/4

r sin ฮธ = 1/2

1/โˆš2 sin ฮธ = 1/2

sin ฮธ = 1/โˆš2 = sin ฯ€/4

sin ฮธ is positive while cos ฮธ is negative. This implies that ฮธ lies in quadrant II.

arg (z) = ฮธ = (ฯ€ โ€“ ฯ€/4) = 3ฯ€/4

Hence, modulus of the given complex number = 1/โˆš2 and argument of given complex number is 3ฯ€/4

14. Find the real numbers x and y if (x โ€“ iy) (3 + 5i) is the conjugate of -6 โ€“ 24i.

SOLUTION

(x โ€“ iy)(3 + 5i) = 3x โ€“ 3iy + 5ix โ€“ 5i2y

= 3x โ€“ 3iy + 5ix โ€“ 5(-1)y

= 3x + 5y + i(5x โ€“ 3y)

Let z = -6 โ€“ 24i

Then, 3x + 5y + i(5x โ€“ 3y) = zฬ„

Therefore,

3x + 5y โ€“ i(5x โ€“ 3y) = z

3x + 5y โ€“ i(5x โ€“ 3y) = -6 โ€“ 24i

Compare the real and imaginary parts on both the sides

3x + 5y = -6

3x = -6 -5y

x = (-6 โ€“ 5y)/3

AND

-(5x โ€“ 3y) = -24

5x โ€“ 3y = 24

5(-6 โ€“ 5y)/3 โ€“ 3y = 24

(-30 โ€“ 25y โ€“ 9y)/3 = 24

-30 โ€“ 34y = 72

-34y = 102

y = -3

x = (-6 โ€“ 5(-3))/3

= (-6 + 15)/3

= 9/3

x = 3

Hence, x = 3 and y = -3.

15. Find the modulus of (1 + i)/(1 โ€“ i) โ€“ (1 โ€“ i)/(1 + i).

SOLUTION

Let z = (1 + i)/(1 โ€“ i) โ€“ (1 โ€“ i)/(1 + i)

z = {(1 + i)2 โ€“ (1 โ€“ i)2}/(1 โ€“ i)(1 + i)

= {1 + i2 + 2i โ€“ 1 โ€“ i2 + 2i}/(1 โ€“ i2)

= (4i)/(1 โ€“ (-1))

= 4i/(1 + 1)

= 4i/2 = 2i

Modulus of the given complex number = |z| = |2i| = โˆš(22) = 2

16. If (x + iy)3 = u + iv, then show that

u/x + v/y = 4(x2 โ€“ y2)

SOLUTION

(x + iy)3 = u + iv

x3 + i3y3 + 3(x2)(iy) + 3(i2y2)(x) = u + iv

x3 + (-i)y3 + 3x2yi + 3(-1)xy2 = u + iv

x3 โ€“ iy3 + 3x2yi โ€“ 3xy2 = u + iv

x3 โ€“ 3xy2 + 3x2yi โ€“ iy3 = u + iv

(x3 โ€“ 3xy2) + i(3x2y โ€“ y3) = u + iv

Comparing real and imaginary parts on both sides, we get

x3 โ€“ 3xy2 = u AND 3x2y โ€“ y3 = v

Now,

u/x + v/y = (x3 โ€“ 3xy2)/x + (3x2y โ€“ y3)/y

= x(x2 โ€“ 3y2)/x + y(3x2 โ€“ y2)/y

= x2 โ€“ 3y2 + 3x2 โ€“ y2

= 4x2 โ€“ 4y2

= 4(x2 โ€“ y2)

Hence, proved.

17. If ฮฑ and ฮฒ are different complex numbers with |ฮฒ| = 1, then find

Ncert solutions class 11th maths chapter 5: complex numbers and quadratic equations
Complex numbers & quadratic equations ncert solutions free pdf download 2

SOLUTION

Let ฮฑ = a + ib and ฮฒ = x + iy

|ฮฒ| = 1

|x + iy| = 1

โˆš(x2+ y2) = 1

x2 + y2 = 1

Ncert solutions class 11th maths chapter 5: complex numbers and quadratic equations

Hence, proved.

18. Find the number of non-zero integral solutions of the equation |1 โ€“ i|x = 2x.

SOLUTION

|1 โ€“ i|x = 2x

[โˆš(12 + (-1)2)]x = 2x

(โˆš2)x = 2x

2x/2 = 2x

Compare the exponents

x/2 = x

x = 2x

2x โ€“ x = 0

x = 0

0 is the only possible solution for the given equation.

Hence, there are no non-zero integral solutions of the given equation.

19. If (a+ib) (c+id) (e+if) (g+ih) = A +iB, then show that

(a2+b2) (c2+d2) (e2+f2) (g2+h2) = A2+ B2

SOLUTION

(a+ib) (c+id) (e+if) (g+ih) = A +iB

Take modulus on both the sides

|(a+ib) (c+id) (e+if) (g+ih)| = |A +iB|

โˆš(a2 + b2) โˆš(c2 + d2) โˆš(e2 + f2) โˆš(g2 + h2) = โˆš(A2 + B2)

Square both sides

(a2 + b2)(c2 + d2)(e2 + f2)(g2 + h2) = (A2 + B2)

Hence, proved.

20. If (1 + i)m/(1 โ€“ i)m = 1, then find the least positive integral value of m.

SOLUTION

[(1 + i)/(1 โ€“ i)]m = 1

Multiply and divide by (1 + i)m

[(1 + i)/(1 โ€“ i) ร— (1 + i)/(1 + i)]m = 1

[(1 + i)2/(12 โ€“ i2)]m = 1

[(1 + i2 + 2i)/(1 โ€“ (-1))]m = 1

[(1 โ€“ 1 + 2i)/(1 + 1))]m = 1

(2i/2)m = 1

im = 1

We know that i4k = 1 for some integer k.

im = i4k

m = 4k

Hence, least positive integral value of m is 4 ร— 1 = 4.


  • NCERT Solutions for Complex Numbers & Quadratic Equations
  • Complex Numbers & Quadratic Equations NCERT PDF
  • Free PDF download NCERT Solutions Class 11 Maths
  • NCERT Class 11 Complex Numbers & Quadratic Equations solutions
  • CBSE Class 11 Maths Chapter 5 solutions
  • NCERT solved examples Complex Numbers & Quadratic Equations
  • Important questions Complex Numbers & Quadratic Equations
  • NCERT step-by-step solutions for Quadratic Equations
  • JEE Complex Numbers & Quadratic Equations NCERT PDF
  • NCERT Maths Chapter 5 Class 11 solutions PDF
  • Free NCERT Maths Class 11 Complex Numbers PDF
  • NCERT Quadratic Equations and Complex Numbers MCQs
  • CBSE board exam questions Complex Numbers & Quadratic Equations
  • NCERT exemplar Complex Numbers & Quadratic Equations solutions
  • NCERT textbook solutions Complex Numbers PDF

โฌ…๏ธ Complex Numbers CBSE Board Important Problems with Solutions | Practice Worksheet PDF download free Geometry of Complex Numbers | Argand Plane, Polar Form | Solved Examples, FAQs, Important Questions Free pdf download โžก๏ธ

๐Ÿ“š Buy Study Material & Join Our Coaching

For premium study materials specially designed for JEE, NEET, NDA, CDS, AFCAT, SSC Exams, visit our official study material portal:
๐Ÿ‘‰ https://publishers.anandclasses.co.in/

For JEE/NEET Notes : Visit https://anandclasses.in/

For NDA Notes : Visit https://nda.anandclasses.in/

For SSC Notes : Visit https://ssc.anandclasses.in/

For CDS, AFCAT Notes : Visit https://cds-afcat.anandclasses.in/

To enroll in our offline or online coaching programs, visit our coaching center website:
๐Ÿ‘‰ https://anandclasses.co.in/

๐Ÿ“ž Call us directly at: +91-94631-38669

๐Ÿ’ฌ WhatsApp Us Instantly

Need quick assistance or want to inquire about classes and materials?

๐Ÿ“ฒ Click below to chat instantly on WhatsApp:
๐Ÿ‘‰ Chat on WhatsApp

๐ŸŽฅ Watch Video Lectures

Get access to high-quality video lessons, concept explainers, and revision tips by subscribing to our official YouTube channel:
๐Ÿ‘‰ Neeraj Anand Classes โ€“ YouTube Channel

RELATED TOPICS