Master JEE Foundation-level Trigonometry with expertly solved problems. Build strong basics, improve accuracy, and boost your confidence for JEE, NDA competitive exams and CBSE Class 10 with our detailed step-by-step solutions.
Prove the Following Problems
sin4 A β cos4 A = 2 sin2 A β 1
Solution:
Taking L.H.S,
sin4 A β cos4 A
= (sin2 A)2 β (cos2 A)2
= (sin2 A + cos2 A) (sin2 A β cos2 A)
= sin2A β cos2A
= sin2A β (1 β sin2A) [Since, cos2 A = 1 β sin2 A]
= 2sin2 A β 1
β Hence Proved
(1 β tan A)2 + (1 + tan A)2 = 2 sec2 A
Solution:
Taking L.H.S,
(1 β tan A)2 + (1 + tan A)2
= (1 + tan2 A + 2 tan A) + (1 + tan2 A β 2 tan A)
= 2 (1 + tan2 A)
= 2 sec2 A [Since, 1 + tan2 A = sec2 A]
β Hence Proved
cosec4 A β cosec2 A = cot4 A + cot2 A
Solution:
cosec4 A β cosec2 A
= cosec2 A(cosec2 A β 1)
= (1 + cot2 A) (1 + cot2 A β 1)
= (1 + cot2 A) cot2 A
= cot4 A + cot2 A = R.H.S
β Hence Proved
(cosec A + sin A) (cosec A β sin A) = cot2 A + cos2 A
Solution:
Taking L.H.S,
(cosec A + sin A) (cosec A β sin A)
= cosec2 A β sin2 A
= (1 + cot2 A) β (1 β cos2 A)
= cot2 A + cos2 A = R.H.S
β Hence Proved
(sec A β cos A)(sec A + cos A) = sin2 A + tan2 A
Solution:
Taking L.H.S,
(sec A β cos A)(sec A + cos A)
= (sec2 A β cos2 A)
= (1 + tan2 A) β (1 β sin2 A)
= sin2 A + tan2 A = RHS
β Hence Proved
(cos A + sin A)2 + (cosA β sin A)2 = 2
Solution:
Taking L.H.S,
(cos A + sin A)2 + (cosA β sin A)2
= cos2 A + sin2 A + 2cos A sin A + cos2 A β 2cosA.sinA
= 2 (cos2 A + sin2 A) = 2 = R.H.S
β Hence Proved
(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A
Solution:
Taking LHS,
(sin A + cosec A)2 + (cos A + sec A)2
= sin2 A + cosec2 A + 2 sin A cosec A + cos2 A + sec2 A + 2cos A sec A
= (sin2 A + cos2 A ) + cosec2 A + sec2 A + 2 + 2
= 1 + cosec2 A + sec2 A + 4
= 5 + (1 + cot2 A) + (1 + tan2 A)
= 7 + tan2 A + cot2 A = RHS
β Hence Proved
sec2 A. cosec2 A = tan2 A + cot2 A + 2
Solution:
Taking,
RHS = tan2 A + cot2 A + 2 = tan2 A + cot2 A + 2 tan A. cot A
= (tan A + cot A)2 = (sin A/cos A + cos A/ sin A)2
= (sin2 A + cos2 A/ sin A.cos A)2 = 1/ cos2 A. sin2 A
= sec2 A. cosec2 A = LHS
β Hence Proved
cot2 A β 1/sin2 A + 1 = 0
Solution:
cot2 A β 1/sin2 A + 1 = 0
LHS = cot2 A β 1/sin2 A + 1
We know that
1/sin A = cosec A
= cot2 A β cosec2 A + 1
= (1 + cot2 A) β cosec2 A
We know that 1 + cot2 A = cosec2 A
= cosec2 A β cosec2 A
= 0
= RHS
Therefore, LHS = RHS.
1/(1 + tan2 A) + 1/(1 + cot2 A) = 1
Solution:
LHS = 1/(1 + tan2 A) + 1/(1 + cot2 A)
We know that
sec2 A β tan2 A = 1
sec2 A = 1 + tan2 A
cosec2 A β cot2 A = 1
cosec2 A = 1 + cot2 A
So we get
= 1/sec2 A + 1/cosec2 A
Here 1/sec A = cos A and 1/cosec A = sin A
= cos2 A + sin2 A
= 1
= RHS
Therefore, LHS = RHS.
If sin A + cosec A = 2; Find the value of sin2 A + cosec2 A.
Solution:
Given, sin A + cosec A = 2
On squaring on both sides, we have
(sin A + cosec A)2 = 22
sin2 A + cosec2 A + 2sinA. cosec A = 4
sin2 A + cosec2 A + 2 = 4 [As sin A. cosec A = sin A x 1/sin A = 1]
sin2 A + cosec2 A = 4 β 2 = 2
Hence, the value of (sin2 A + cosec2 A) is 2
If x cos A + y sin A = m and x sin A β y cos A = n, then prove that: x2 + y2 = m2 + n2
Solution:
Taking RHS,
m2 + n2
= (x cos A + y sin A)2 + (x sin A β y cos A)2
= x2 cos2 A + y2 sin2 A + 2xy cos A sin A + x2 sin2 A + y2 cos2 A β 2xy sin A cos A
= x2 (cos2 A + sin2 A) + y2 (sin2 A + cos2 A)
= x2 + y2 [Since, cos2 A + sin2 A = 1]
= RHS
If m = a sec A + b tan A and n = a tan A + b sec A, prove that m2 β n2 = a2 β b2
Solution:
Taking LHS,
m2 β n2
= (a sec A + b tan A)2 β (a tan A + b sec A)2
= a2 sec2 A + b2 tan2 A + 2 ab sec A tan A β a2 tan2 A β b2 sec2 A β 2ab tan A sec A
= a2 (sec2 A β tan2 A) + b2 (tan2 A β sec2 A)
= a2 (1) + b2 (-1) [Since, sec2 A β tan2 A = 1]
= a2 β b2
= RHS
If sin ΞΈ + cosec ΞΈ = 2, find the value of sin2 ΞΈ + cosec2 ΞΈ.
Solution:
It is given that
sin ΞΈ + cosec ΞΈ = 2
sin ΞΈ + 1/sin ΞΈ = 2
By further calculation
sin2 ΞΈ + 1 = 2 sin ΞΈ
sin2 ΞΈ β 2 sin ΞΈ + 1 = 0
So we get
(sin ΞΈ β 1)2 = 0
sin ΞΈ β 1 = 0
sin ΞΈ = 1
Here
sin2 ΞΈ + cosec2 ΞΈ = sin2 ΞΈ + 1/sin2 ΞΈ
Substituting the values
= 12 + 1/12
= 1 + 1/1
= 1 + 1
= 2
If x = a cos ΞΈ + b sin ΞΈ and y = a sin ΞΈ β b cos ΞΈ, prove that x2 + y2 = a2 + b2.
Solution:
It is given that
x = a cos ΞΈ + b sin ΞΈ β¦. (1)
y = a sin ΞΈ β b cos ΞΈ β¦. (2)
By squaring and adding both the equations
x2 + y2 = (a cos ΞΈ + b sin ΞΈ)2 + (a sin ΞΈ β b cos ΞΈ)2
Using the formula
(a + b)2 = a2 + b2 + 2ab and (a β b)2 = a2 + b2 β 2ab
= [(a cos ΞΈ)2 + (b sin ΞΈ)2 + 2 (a cos ΞΈ) (b sin ΞΈ)] + [(a sin ΞΈ)2 + (b cos ΞΈ)2 β 2 (a sin ΞΈ) (b cos ΞΈ)]
By further calculation
= a2 cos2 ΞΈ + b2 sin2 ΞΈ + 2 ab sin ΞΈ cos ΞΈ + a2 sin2 ΞΈ + b2 cos2 ΞΈ β 2 ab sin ΞΈ cos ΞΈ
= a2 cos2 ΞΈ + b2 sin2 ΞΈ + a2 sin2 ΞΈ + b2 cos2 ΞΈ
So we get
= a2 (cos2 ΞΈ + sin2 ΞΈ) + b2 (sin2 ΞΈ + cos2 ΞΈ)
Here sin2 ΞΈ + cos2 ΞΈ = 1
= a2 (1) + b2 (1)
= a2 + b2
Therefore, x2 + y2 = a2 + b2.
If 2 cos ΞΈ = β3, prove that 3 sin ΞΈ β 4 sin3 ΞΈ = 1.
Solution:
It is given that
2 cos ΞΈ = β3
cos ΞΈ = β3/2
We know that
sin2 ΞΈ = 1 β cos2 ΞΈ
Substituting the values
sin2 ΞΈ = 1 β (β3/2)2
sin2 ΞΈ = 1 β 3/4
sin2 ΞΈ = ΒΌ
sin ΞΈ = β 1/4 = 1/2
Consider
LHS = 3 sin ΞΈ β 4 sin3 ΞΈ
It can be written as
= sin ΞΈ (3 β 4 sin2 ΞΈ)
Substituting the values
= 1/2 (3 β 4 Γ ΒΌ)
= 1/2 (3 β 1)
= 1/2 Γ 2
= 1
= RHS
Therefore, proved.
If sin ΞΈ + cosec ΞΈ = 10/3, find the value of sin2 ΞΈ + cosec2 ΞΈ.
Solution:
It is given that
sin ΞΈ + cosec ΞΈ = 10/3
By squaring on both sides
(sin ΞΈ + cosec ΞΈ)2 = (10/3)2
Expanding using formula (a + b)2 = a2 + b2 + 2ab
sin2 ΞΈ + cosec2 ΞΈ + 2 sin ΞΈ cosec ΞΈ = 100/9
We know that sin ΞΈ = 1/cosec ΞΈ
sin2 ΞΈ + cosec2 ΞΈ + 2 sin ΞΈ Γ 1/ sin ΞΈ = 100/9
By further calculation
sin2 ΞΈ + cosec2 ΞΈ + 2 = 100/9
sin2 ΞΈ + cosec2 ΞΈ = 100/9 β 2
Taking LCM
sin2 ΞΈ + cosec2 ΞΈ = (100 β 18)/9 = 82/9
So we get
sin2 ΞΈ + cosec2 ΞΈ = 82/9
Prove that : tan A + cot A = sec A cosec A
Solution:
L.H.S. = tan A + cot A
= sin A/cos A + cos A/sin A
= (sin2 A + cos2 A)/ (sin A cos A)
= 1/ (sin A cos A)
= sec A cosec A
= R.H.S
Prove that : (1 + tan A)2 + (1 β tan A)2 = 2 sec2 A
Solution:
L.H.S. = (1 + tan A)2 + (1 β tan A)2
= 1 + 2 tan A + tan2 A + 1 β 2 tan A + tan2 A
= 2 + 2 tan2 A
= 2(1 + tan2 A) [As 1 + tan2 A = sec2 A]
= 2 sec2 A
= R.H.S.
Prove that : sec2 A + cosec2 A = sec2 A. cosec2 A
Solution:
L.H.S = sec2 A + cosec2 A
= 1/cos2 A + 1/sin2 A
= (sin2 A + cos2 A)/ (sin2 A cos2 A)
= 1/ (sin2 A cos2 A)
= sec2 A cosec2 A = R.H.S
Prove that : cosec4 ΞΈ β cosec2 ΞΈ = cot4 ΞΈ + cot2 ΞΈ
Solution:
L.H.S. = cosec4 ΞΈ β cosec2 ΞΈ
= cosec2 ΞΈ (cosec2 ΞΈ β 1)
= cosec2 ΞΈ cot2 ΞΈ [cosec2 ΞΈ β 1 = cot2 ΞΈ]
= (cot2 ΞΈ + 1) cot2 ΞΈ
= cot4 ΞΈ + cot2 ΞΈ
= R.H.S.
Prove that : 2 sec2 ΞΈ β sec4 ΞΈ β 2 cosec2 ΞΈ + cosec4 ΞΈ = cot4 ΞΈ β tan4 ΞΈ.
Solution:
L.H.S. = 2 sec2 ΞΈ β sec4 ΞΈ β 2 cosec2 ΞΈ + cosec4 ΞΈ
= 2 (tan2 ΞΈ + 1) β (tan2 ΞΈ + 1)2 β 2 (1 + cot2 ΞΈ) + (1 + cot2 ΞΈ)2
= 2 tan2 ΞΈ + 2 β (tan4 ΞΈ + 2 tan2 ΞΈ + 1) β 2 β 2 cot2 ΞΈ + (1 + 2 cot2 ΞΈ + cot4 ΞΈ)
= 2 tan2 ΞΈ + 2 β tan4 ΞΈ β 2 tan2 ΞΈ β 1 β 2 β 2 cot2 ΞΈ + 1 + 2 cot2 ΞΈ + cot4 ΞΈ
= cot4 ΞΈ β tan4 ΞΈ = R.H.S.
Prove that : sec4 A β tan4 A = 1 + 2 tan2 A
Solution:
sec4 A β tan4 A = 1 + 2 tan2 A
L.H.S. = sec4 A β tan4 A
= (sec2 A β tan2 A) (sec2 A + tan2 A)
= (1 + tan4 A β tan4 A) (1 + tan4 A + tan4 A) [As sec2 A = tan4 A + 1]
= 1 (1 + 2 tan2 A)
= 1 + 2 tan2 A = R.H.S.
If 7 sin2 ΞΈ + 3 cos2 ΞΈ = 4, 0Β° β€ ΞΈ β€ 90Β°, then find the value of ΞΈ.
Solution:
Given,
7 sin2 ΞΈ + 3 cos2 ΞΈ = 4, 0Β° β€ ΞΈ β€ 90Β°
3 sin2 ΞΈ + 3 cos2 ΞΈ + 4 sin2 ΞΈ = 4
3 (sin2 ΞΈ + 3 cos2 ΞΈ) + 4 sin2 ΞΈ = 4
3 (1) + 4 sin2 ΞΈ = 4
4 sin2 ΞΈ = 4 β 3
sin2 ΞΈ = ΒΌ
Taking square-root on both sides, we get
sin ΞΈ = Β½
Thus, ΞΈ = 30o
If sec ΞΈ + tan ΞΈ = m and sec ΞΈ β tan ΞΈ = n, prove that mn = 1.
Solution:
Given,
sec ΞΈ + tan ΞΈ = m
sec ΞΈ β tan ΞΈ = n
Now,
mn = (sec ΞΈ + tan ΞΈ) (sec ΞΈ β tan ΞΈ)
= sec2 ΞΈ β tan2 ΞΈ = 1
Thus, mn = 1
If x = h + a cos ΞΈ and y = k + a sin ΞΈ, prove that (x β h)2 + (y β k)2 = a2.
Solution:
Given,
x = h + a cos ΞΈ
y = k + a sin ΞΈ
Now,
x β h = a cos ΞΈ
y β k = a sin ΞΈ
On squaring and adding, we get
(x β h)2 + (y β k)2 = a2 cos2 ΞΈ + a2 sin2 ΞΈ
= a2 (sin2 ΞΈ + cos2 ΞΈ)
= a2 (1) [Since, sin2 ΞΈ + cos2 ΞΈ = 1]
β Hence proved
Prove that : sin2 ΞΈ + cos4 ΞΈ = cos2 ΞΈ + sin4 ΞΈ
Solution :
sin2 ΞΈ + cos4 ΞΈ = cos2 ΞΈ + sin4 ΞΈ
L.H.S. = sin2 ΞΈ + cos4 ΞΈ
= (1 β cos2 ΞΈ) + cos4 ΞΈ
= cos4 ΞΈ β cos2 ΞΈ + 1
= cos2 ΞΈ (cos2 ΞΈ β 1) + 1
= cos2 ΞΈ (- sin2 ΞΈ) + 1
= 1 β sin2 ΞΈ cos2 ΞΈ
Now,
R.H.S. = cos2 ΞΈ + sin4 ΞΈ
= (1 β sin2 ΞΈ) + sin4 ΞΈ
= sin4 ΞΈ β sin2 ΞΈ + 1
= sin2 ΞΈ (sin2 ΞΈ β 1) + 1
= sin2 ΞΈ (-cos2 ΞΈ) + 1
= 1 β sin2 ΞΈ cos2 ΞΈ
Hence, L.H.S. = R.H.S.
Prove that : 2 (sin6 ΞΈ + cos6 ΞΈ) β 3 (sin4 ΞΈ + cos4 ΞΈ) + 1 = 0
Solution:
Given,
2 (sin6 ΞΈ + cos6 ΞΈ) β 3 (sin4 ΞΈ + cos4 ΞΈ) + 1 = 0
L.H.S. = 2 (sin6 ΞΈ + cos6 ΞΈ) β 3 (sin4 ΞΈ + cos4 ΞΈ) + 1
= 2 [(sin2 ΞΈ)3 + (cos2 ΞΈ)3] β 3 (sin4 ΞΈ + cos4 ΞΈ) + 1
= 2 [(sin2 ΞΈ + cos2 ΞΈ) (sin4 ΞΈ + cos4 ΞΈ β sin2 ΞΈ cos2 ΞΈ)] β 3 (sin4 ΞΈ + cos4 ΞΈ) + 1
= 2 (sin4 ΞΈ + cos4 ΞΈ β sin2 ΞΈ cos2 ΞΈ) β 3 (sin4 ΞΈ + cos4 ΞΈ) + 1
= 2 sin4 ΞΈ + 2 cos4 ΞΈ β 2 sin2 ΞΈ cos2 ΞΈ β 3 sin4 ΞΈ β 3 cos4 ΞΈ + 1
= 1 β sin4 ΞΈ β cos4 ΞΈ β 2 sin2 ΞΈ cos2 ΞΈ
= 1 β [sin4 ΞΈ + cos4 ΞΈ + 2 sin2 ΞΈ cos2 ΞΈ]
= 1 β 1
= 0 = R.H.S.
When 0Β° < ΞΈ < 90Β°, solve the following equations:
(i) 2 cos2 ΞΈ + sin ΞΈ β 2 = 0
(ii) 3 cos ΞΈ = 2 sin2 ΞΈ
(iii) sec2 ΞΈ β 2 tan ΞΈ = 0
(iv) tan2 ΞΈ = 3 (sec ΞΈ β 1).
Solution:
Given, 0Β° < ΞΈ < 90Β°
(i) 2 cos2 ΞΈ + sin ΞΈ β 2 = 0
2 (1 β sin2 ΞΈ) + sin ΞΈ β 2 = 0
2 β 2 sin2 ΞΈ + sin ΞΈ β 2 = 0
β 2 sin2 ΞΈ + sin ΞΈ = 0
sin ΞΈ (1 β 2 sin ΞΈ) = 0
So, either sin ΞΈ = 0 or 1 β 2 sin ΞΈ = 0
If sin ΞΈ = 0
β ΞΈ = 0o
And, if 1 β 2 sin ΞΈ = 0
sin ΞΈ = Β½
β ΞΈ = 30o
Thus, ΞΈ = 0o or 30o
(ii) 3 cos ΞΈ = 2 sin2 ΞΈ
3 cos ΞΈ = 2 (1 β cos2 ΞΈ)
3 cos ΞΈ = 2 β 2 cos2 ΞΈ
2 cos2 ΞΈ + 3 cos ΞΈ β 2 = 0
2 cos2 ΞΈ + 4 cos ΞΈ β cos ΞΈ β 2 = 0
2 cos ΞΈ (cos ΞΈ + 2) β 1(cos ΞΈ + 2)
(2 cos ΞΈ β 1) (cos ΞΈ + 2) = 0
So, either 2 cos ΞΈ β 1 = 0 or cos ΞΈ + 2 = 0
If 2 cos ΞΈ β 1 = 0
cos ΞΈ = Β½
β ΞΈ = 60o
And, for cos ΞΈ + 2 = 0
β cos ΞΈ = -2 which is not possible being out of range.
Thus, ΞΈ = 60o
(iii) sec2 ΞΈ β 2 tan ΞΈ = 0
(1 + tan2 ΞΈ) β 2 tan ΞΈ = 0
tan2 ΞΈ β 2 tan ΞΈ + 1 = 0
(tan ΞΈ β 1)2 = 0
tan ΞΈ β 1 = 0
β tan ΞΈ = 1
Thus, ΞΈ = 45o
(iv) tan2 ΞΈ = 3 (sec ΞΈ β 1)
(sec2 ΞΈ β 1) = 3 sec ΞΈ β 3
sec2 ΞΈ β 1 β 3 sec ΞΈ + 3 = 0
sec2 ΞΈ β 3 sec ΞΈ + 2 = 0
sec2 ΞΈ β 2 sec ΞΈ β sec ΞΈ + 2 = 0
sec ΞΈ (sec ΞΈ β 2) β 1 (sec ΞΈ = 2) = 0
(sec ΞΈ β 1) (sec ΞΈ β 2) = 0
So, either sec ΞΈ β 1 = 0 or sec ΞΈ β 2 = 0
If sec ΞΈ β 1 = 0
sec ΞΈ = 1
β ΞΈ = 0o
And, if sec ΞΈ β 2 = 0
sec ΞΈ = 2
β ΞΈ = 60o
Thus, ΞΈ = 0o or 60o
π‘ Do You Know?
- The values of trigonometric ratios are exact for 0Β°, 30Β°, 45Β°, 60Β°, and 90Β°.
- These ratios are frequently used in geometry, physics, astronomy, and engineering.
- The identities like sinΒ²ΞΈ + cosΒ²ΞΈ = 1 help derive all other formulas in trigonometry.
π Quick Summary Table
Angle | sin | cos | tan | sec | cosec | cot |
---|---|---|---|---|---|---|
0Β° | 0 | 1 | 0 | 1 | β | β |
30Β° | 1/2 | β3/2 | 1/β3 | 2/β3 | 2 | β3 |
45Β° | 1/β2 | 1/β2 | 1 | β2 | β2 | 1 |
60Β° | β3/2 | 1/2 | β3 | 2 | 2/β3 | 1/β3 |
90Β° | 1 | 0 | β | β | 1 | 0 |
Trigonmetric Identities Table Summary
Identities Name | Identities |
---|---|
Pythagorean Identities | sin2ΞΈ + cos2ΞΈ = 1 |
1 + tan2ΞΈ = sec2ΞΈ | |
1 + cot2ΞΈ = cosec2ΞΈ | |
Reciprocal Identities | cosec ΞΈ = 1/sin ΞΈ |
sec ΞΈ = 1/cos ΞΈ | |
cot ΞΈ = 1/tan ΞΈ | |
Quotient Identities | tan ΞΈ = sin ΞΈ/cos ΞΈ |
cot ΞΈ = cos ΞΈ/sin ΞΈ |