Trigonometry JEE Foundation Important Solved Problems and Examples

โญโญโญโœฉ (3.8/5 from 161 reviews)

Prove the Following Problems


 sin4 A โ€“ cos4 A = 2 sin2 A โ€“ 1

Solution:

Taking L.H.S,

sin4 A โ€“ cos4 A

= (sinA)2 โ€“ (cos2 A)2

= (sin2 A + cos2 A) (sin2 A โ€“ cos2 A)

= sin2A โ€“ cos2A

= sin2A โ€“ (1 โ€“ sin2A) [Since, cos2 A = 1 โ€“ sin2 A]

= 2sin2 A โ€“ 1

โ€“ Hence Proved


(1 โ€“ tan A)2 + (1 + tan A)2 = 2 sec2 A

Solution:

Taking L.H.S,

(1 โ€“ tan A)2 + (1 + tan A)2

= (1 + tan2 A + 2 tan A) + (1 + tan2 A โ€“ 2 tan A)

= 2 (1 + tan2 A)

= 2 sec2 A [Since, 1 + tan2 A = sec2 A]

โ€“ Hence Proved


cosec4 A โ€“ cosec2 A = cot4 A + cot2 A

Solution:

cosec4 A โ€“ cosec2 A

= cosec2 A(cosec2 A โ€“ 1)

= (1 + cot2 A) (1 + cot2 A โ€“ 1)

= (1 + cot2 A) cot2 A

= cot4 A + cot2 A = R.H.S

โ€“ Hence Proved


(cosec A + sin A) (cosec A โ€“ sin A) = cot2 A + cos2 A

Solution:

Taking L.H.S,

(cosec A + sin A) (cosec A โ€“ sin A)

= cosec2 A โ€“ sin2 A

= (1 + cotA) โ€“ (1 โ€“ cos2 A)

= cotA + cos2 A = R.H.S

โ€“ Hence Proved


(sec A โ€“ cos A)(sec A + cos A) = sin2 A + tan2 A

Solution:

Taking L.H.S,

(sec A โ€“ cos A)(sec A + cos A)

= (sec2 A โ€“ cos2 A)

= (1 + tan2 A) โ€“ (1 โ€“ sin2 A)

= sin2 A + tan2 A = RHS

โ€“ Hence Proved


(cos A + sin A)2 + (cosA โ€“ sin A)2 = 2

Solution:

Taking L.H.S,

(cos A + sin A)2 + (cosA โ€“ sin A)2

= cos2 A + sin2 A + 2cos A sin A + cos2 A โ€“ 2cosA.sinA

= 2 (cos2 A + sin2 A) = 2 = R.H.S

โ€“ Hence Proved


(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A

Solution:

Taking LHS,

(sin A + cosec A)2 + (cos A + sec A)2

= sin2 A + cosec2 A + 2 sin A cosec A + cos2 A + sec2 A + 2cos A sec A

= (sin2 A + cos2 A ) + cosec2 A + sec2 A + 2 + 2

= 1 + cosec2 A + sec2 A + 4

= 5 + (1 + cot2 A) + (1 + tan2 A)

= 7 + tan2 A + cot2 A = RHS

โ€“ Hence Proved


sec2 A. cosec2 A = tan2 A + cot2 A + 2

Solution:

Taking,

RHS = tan2 A + cot2 A + 2 = tan2 A + cot2 A + 2 tan A. cot A

= (tan A + cot A)2 = (sin A/cos A + cos A/ sin A)2

= (sin2 A + cos2 A/ sin A.cos A)2 = 1/ cos2 A. sin2 A

= sec2 A. cosec2 A = LHS

โ€“ Hence Proved


 cot2 A โ€“ 1/sin2 A + 1 = 0

Solution:

cot2 A โ€“ 1/sin2 A + 1 = 0

LHS = cot2 A โ€“ 1/sin2 A + 1

We know that

1/sin A = cosec A

= cot2 A โ€“ cosec2 A + 1

= (1 + cot2 A) โ€“ cosec2 A

We know that 1 + cot2 A = cosec2 A

= cosec2 A โ€“ cosec2 A

= 0

= RHS

Therefore, LHS = RHS.


1/(1 + tan2 A) + 1/(1 + cot2 A) = 1

Solution:

LHS = 1/(1 + tan2 A) + 1/(1 + cot2 A)

We know that

sec2 A โ€“ tan2 A = 1

sec2 A = 1 + tan2 A

cosec2 A โ€“ cot2 A = 1

cosec2 A = 1 + cot2 A

So we get

= 1/sec2 A + 1/cosec2 A

Here 1/sec A = cos A and 1/cosec A = sin A

= cos2 A + sin2 A

= 1

= RHS

Therefore, LHS = RHS.


If sin A + cosec A = 2; Find the value of sin2 A + cosec2 A.

Solution:

Given, sin A + cosec A = 2

On squaring on both sides, we have

(sin A + cosec A)2 = 22

sin2 A + cosec2 A + 2sinA. cosec A = 4

sin2 A + cosec2 A + 2 = 4 [As sin A. cosec A = sin A x 1/sin A = 1]

sin2 A + cosec2 A = 4 โ€“ 2 = 2

Hence, the value of (sin2 A + cosec2 A) is 2


If x cos A + y sin A = m and x sin A โ€“ y cos A = n, then prove that: x2 + y2 = m2 + n2 

Solution:

Taking RHS,

m2 + n2

= (x cos A + y sin A)2 + (x sin A โ€“ y cos A)2

= x2 cos2 A + y2 sin2 A + 2xy cos A sin A + x2 sin2 A + y2 cos2 A โ€“ 2xy sin A cos A

= x2 (cos2 A + sin2 A) + y2 (sin2 A + cos2 A)

= x2 + y2 [Since, cos2 A + sin2 A = 1]

= RHS


If m = a sec A + b tan A and n = a tan A + b sec A, prove that m2 โ€“ n2 = a2 โ€“ b2

Solution:

Taking LHS,

m2 โ€“ n2

= (a sec A + b tan A)2 โ€“ (a tan A + b sec A)2

= a2 sec2 A + b2 tan2 A + 2 ab sec A tan A โ€“ a2 tan2 A โ€“ b2 sec2 A โ€“ 2ab tan A sec A

= a2 (sec2 A โ€“ tan2 A) + b2 (tan2 A โ€“ sec2 A)

= a2 (1) + b2 (-1) [Since, sec2 A โ€“ tan2 A = 1]

= a2 โ€“ b2

= RHS


 If sin ฮธ + cosec ฮธ = 2, find the value of sin2 ฮธ + cosec2 ฮธ.

Solution:

It is given that

sin ฮธ + cosec ฮธ = 2

sin ฮธ + 1/sin ฮธ = 2

By further calculation

sin2 ฮธ + 1 = 2 sin ฮธ

sin2 ฮธ โ€“ 2 sin ฮธ + 1 = 0

So we get

(sin ฮธ โ€“ 1)2 = 0

sin ฮธ โ€“ 1 = 0

sin ฮธ = 1

Here

sin2 ฮธ + cosec2 ฮธ = sin2 ฮธ + 1/sin2 ฮธ

Substituting the values

= 12 + 1/12

= 1 + 1/1

= 1 + 1

= 2


If x = a cos ฮธ + b sin ฮธ and y = a sin ฮธ โ€“ b cos ฮธ, prove that x2 + y2 = a2 + b2.

Solution:

It is given that

x = a cos ฮธ + b sin ฮธ โ€ฆ. (1)

y = a sin ฮธ โ€“ b cos ฮธ โ€ฆ. (2)

By squaring and adding both the equations

x2 + y2 = (a cos ฮธ + b sin ฮธ)2 + (a sin ฮธ โ€“ b cos ฮธ)2

Using the formula

(a + b)2 = a2 + b2 + 2ab and (a โ€“ b)2 = a2 + b2 โ€“ 2ab

= [(a cos ฮธ)2 + (b sin ฮธ)2 + 2 (a cos ฮธ) (b sin ฮธ)] + [(a sin ฮธ)2 + (b cos ฮธ)2 โ€“ 2 (a sin ฮธ) (b cos ฮธ)]

By further calculation

= a2 cos2 ฮธ + b2 sin2 ฮธ + 2 ab sin ฮธ cos ฮธ + a2 sin2 ฮธ + b2 cos2 ฮธ โ€“ 2 ab sin ฮธ cos ฮธ

= a2 cos2 ฮธ + b2 sin2 ฮธ + a2 sin2 ฮธ + b2 cos2 ฮธ

So we get

= a2 (cos2 ฮธ + sin2 ฮธ) + b2 (sin2 ฮธ + cos2 ฮธ)

Here sin2 ฮธ + cos2 ฮธ = 1

= a2 (1) + b2 (1)

= a2 + b2

Therefore, x2 + y2 = a2 + b2.


 If 2 cos ฮธ = โˆš3, prove that 3 sin ฮธ โ€“ 4 sin3 ฮธ = 1.

Solution:

It is given that

2 cos ฮธ = โˆš3

cos ฮธ = โˆš3/2

We know that

sin2 ฮธ = 1 โ€“ cos2 ฮธ

Substituting the values

sin2 ฮธ = 1 โ€“ (โˆš3/2)2

sin2 ฮธ = 1 โ€“ 3/4

sin2 ฮธ = ยผ

sin ฮธ = โˆš 1/4 = 1/2

Consider

LHS = 3 sin ฮธ โ€“ 4 sin3 ฮธ

It can be written as

= sin ฮธ (3 โ€“ 4 sin2 ฮธ)

Substituting the values

= 1/2 (3 โ€“ 4 ร— ยผ)

= 1/2 (3 โ€“ 1)

= 1/2 ร— 2

= 1

= RHS

Therefore, proved.


 If sin ฮธ + cosec ฮธ = 10/3, find the value of sin2 ฮธ + cosec2 ฮธ.

Solution:

It is given that

sin ฮธ + cosec ฮธ = 10/3

By squaring on both sides

(sin ฮธ + cosec ฮธ)2 = (10/3)2

Expanding using formula (a + b)2 = a2 + b2 + 2ab

sin2 ฮธ + cosec2 ฮธ + 2 sin ฮธ cosec ฮธ = 100/9

We know that sin ฮธ = 1/cosec ฮธ

sin2 ฮธ + cosec2 ฮธ + 2 sin ฮธ ร— 1/ sin ฮธ = 100/9

By further calculation

sin2 ฮธ + cosec2 ฮธ + 2 = 100/9

sin2 ฮธ + cosec2 ฮธ = 100/9 โ€“ 2

Taking LCM

sin2 ฮธ + cosec2 ฮธ = (100 โ€“ 18)/9 = 82/9

So we get

sin2 ฮธ + cosec2 ฮธ = 82/9


Prove that : tan A + cot A = sec A cosec A 

Solution:

L.H.S. = tan A + cot A

= sin A/cos A + cos A/sin A

= (sin2 A + cos2 A)/ (sin A cos A)

= 1/ (sin A cos A)

= sec A cosec A

= R.H.S


Prove that : (1 + tan A)2 + (1 โ€“ tan A)2 = 2 sec2 A

Solution:

L.H.S. = (1 + tan A)2 + (1 โ€“ tan A)2

= 1 + 2 tan A + tan2 A + 1 โ€“ 2 tan A + tan2 A

= 2 + 2 tan2 A

= 2(1 + tan2 A) [As 1 + tan2 A = sec2 A]

= 2 sec2 A

= R.H.S.


Prove that : secA + cosec2 A = sec2 A. cosec2 A

Solution:

L.H.S = secA + cosec2 A

= 1/cos2 A + 1/sin2 A

= (sin2 A + cos2 A)/ (sin2 A cos2 A)

= 1/ (sin2 A cos2 A)

= sec2 A cosec2 A = R.H.S


Prove that : cosec4 ฮธ โ€“ cosec2 ฮธ = cot4 ฮธ + cot2 ฮธ 

Solution:

L.H.S. = cosec4 ฮธ โ€“ cosec2 ฮธ

= cosec2 ฮธ (cosec2 ฮธ โ€“ 1)

= cosec2 ฮธ cot2 ฮธ [cosec2 ฮธ โ€“ 1 = cot2 ฮธ]

= (cot2 ฮธ + 1) cot2 ฮธ

= cot4 ฮธ + cot2 ฮธ

= R.H.S.


Prove that : 2 sec2 ฮธ โ€“ sec4 ฮธ โ€“ 2 cosec2 ฮธ + cosec4 ฮธ = cot4 ฮธ โ€“ tan4 ฮธ.

Solution:

L.H.S. = 2 sec2 ฮธ โ€“ sec4 ฮธ โ€“ 2 cosec2 ฮธ + cosec4 ฮธ

= 2 (tan2 ฮธ + 1) โ€“ (tan2 ฮธ + 1)2 โ€“ 2 (1 + cot2 ฮธ) + (1 + cot2 ฮธ)2

= 2 tan2 ฮธ + 2 โ€“ (tan4 ฮธ + 2 tan2 ฮธ + 1) โ€“ 2 โ€“ 2 cot2 ฮธ + (1 + 2 cotฮธ + cot4 ฮธ)

= 2 tan2 ฮธ + 2 โ€“ tan4 ฮธ โ€“ 2 tan2 ฮธ โ€“ 1 โ€“ 2 โ€“ 2 cot2 ฮธ + 1 + 2 cotฮธ + cot4 ฮธ

= cot4 ฮธ โ€“ tan4 ฮธ = R.H.S.


Prove that : sec4 A โ€“ tan4 A = 1 + 2 tan2 A

Solution:

sec4 A โ€“ tan4 A = 1 + 2 tan2 A

L.H.S. = sec4 A โ€“ tan4 A

= (sec2 A โ€“ tan2 A) (sec2 A + tan2 A)

= (1 + tan4 A โ€“ tan4 A) (1 + tan4 A + tan4 A) [As sec2 A = tan4 A + 1]

= 1 (1 + 2 tan2 A)

= 1 + 2 tan2 A = R.H.S.


 If 7 sin2 ฮธ + 3 cos2 ฮธ = 4, 0ยฐ โ‰ค ฮธ โ‰ค 90ยฐ, then find the value of ฮธ.

Solution:

Given,

7 sin2 ฮธ + 3 cos2 ฮธ = 4, 0ยฐ โ‰ค ฮธ โ‰ค 90ยฐ

3 sin2 ฮธ + 3 cos2 ฮธ + 4 sin2 ฮธ = 4

3 (sin2 ฮธ + 3 cos2 ฮธ) + 4 sin2 ฮธ = 4

3 (1) + 4 sin2 ฮธ = 4

4 sin2 ฮธ = 4 โ€“ 3

sin2 ฮธ = ยผ

Taking square-root on both sides, we get

sin ฮธ = ยฝ

Thus, ฮธ = 30o


If sec ฮธ + tan ฮธ = m and sec ฮธ โ€“ tan ฮธ = n, prove that mn = 1.

Solution:

Given,

sec ฮธ + tan ฮธ = m

sec ฮธ โ€“ tan ฮธ = n

Now,

mn = (sec ฮธ + tan ฮธ) (sec ฮธ โ€“ tan ฮธ)

= sec2 ฮธ โ€“ tan2 ฮธ = 1

Thus, mn = 1


 If x = h + a cos ฮธ and y = k + a sin ฮธ, prove that (x โ€“ h)2 + (y โ€“ k)2 = a2.

Solution:

Given,

x = h + a cos ฮธ

y = k + a sin ฮธ

Now,

x โ€“ h = a cos ฮธ

y โ€“ k = a sin ฮธ

On squaring and adding, we get

(x โ€“ h)2 + (y โ€“ k)2 = a2 cos2 ฮธ + a2 sin2 ฮธ

= a(sin2 ฮธ + cos2 ฮธ)

= a2 (1) [Since, sin2 ฮธ + cos2 ฮธ = 1]

โ€“ Hence proved


Prove that : sin2 ฮธ + cos4 ฮธ = cos2 ฮธ + sin4 ฮธ 

Solution :

sin2 ฮธ + cos4 ฮธ = cos2 ฮธ + sin4 ฮธ

L.H.S. = sin2 ฮธ + cos4 ฮธ

= (1 โ€“ cos2 ฮธ) + cos4 ฮธ

= cos4 ฮธ โ€“ cos2 ฮธ + 1

= cos2 ฮธ (cos2 ฮธ โ€“ 1) + 1

= cos2 ฮธ (- sin2 ฮธ) + 1

= 1 โ€“ sin2 ฮธ cos2 ฮธ

Now,

R.H.S. = cos2 ฮธ + sin4 ฮธ

= (1 โ€“ sin2 ฮธ) + sin4 ฮธ

= sin4 ฮธ โ€“ sin2 ฮธ + 1

= sin2 ฮธ (sin2 ฮธ โ€“ 1) + 1

= sin2 ฮธ (-cos2 ฮธ) + 1

= 1 โ€“ sin2 ฮธ cos2 ฮธ

Hence, L.H.S. = R.H.S.


Prove that : 2 (sin6 ฮธ + cos6 ฮธ) โ€“ 3 (sin4 ฮธ + cos4 ฮธ) + 1 = 0

Solution:

Given,

2 (sin6 ฮธ + cos6 ฮธ) โ€“ 3 (sin4 ฮธ + cos4 ฮธ) + 1 = 0

L.H.S. = 2 (sin6 ฮธ + cos6 ฮธ) โ€“ 3 (sin4 ฮธ + cos4 ฮธ) + 1

= 2 [(sin2 ฮธ)3 + (cos2 ฮธ)3] โ€“ 3 (sin4 ฮธ + cos4 ฮธ) + 1

= 2 [(sin2 ฮธ + cos2 ฮธ) (sin4 ฮธ + cos4 ฮธ โ€“ sin2 ฮธ cos2 ฮธ)] โ€“ 3 (sin4 ฮธ + cos4 ฮธ) + 1

= 2 (sin4 ฮธ + cos4 ฮธ โ€“ sin2 ฮธ cos2 ฮธ) โ€“ 3 (sin4 ฮธ + cos4 ฮธ) + 1

= 2 sin4 ฮธ + 2 cos4 ฮธ โ€“ 2 sin2 ฮธ cos2 ฮธ โ€“ 3 sin4 ฮธ โ€“ 3 cos4 ฮธ + 1

= 1 โ€“ sin4 ฮธ โ€“ cos4 ฮธ โ€“ 2 sin2 ฮธ cos2 ฮธ

= 1 โ€“ [sin4 ฮธ + cos4 ฮธ + 2 sin2 ฮธ cos2 ฮธ]

= 1 โ€“ 1

= 0 = R.H.S.


When 0ยฐ < ฮธ < 90ยฐ, solve the following equations: 

(i) 2 cos2 ฮธ + sin ฮธ โ€“ 2 = 0 

(ii) 3 cos ฮธ = 2 sin2 ฮธ 

(iii) sec2 ฮธ โ€“ 2 tan ฮธ = 0 

(iv) tan2 ฮธ = 3 (sec ฮธ โ€“ 1).

Solution:

Given, 0ยฐ < ฮธ < 90ยฐ

(i) 2 cos2 ฮธ + sin ฮธ โ€“ 2 = 0

2 (1 โ€“ sin2 ฮธ) + sin ฮธ โ€“ 2 = 0

2 โ€“ 2 sin2 ฮธ + sin ฮธ โ€“ 2 = 0

โ€“ 2 sin2 ฮธ + sin ฮธ = 0

sin ฮธ (1 โ€“ 2 sin ฮธ) = 0

So, either sin ฮธ = 0 or 1 โ€“ 2 sin ฮธ = 0

If sin ฮธ = 0

โ‡’ ฮธ = 0o

And, if 1 โ€“ 2 sin ฮธ = 0

sin ฮธ = ยฝ

โ‡’ ฮธ = 30o

Thus, ฮธ = 0o or 30o

(ii) 3 cos ฮธ = 2 sin2 ฮธ

3 cos ฮธ = 2 (1 โ€“ cos2 ฮธ)

3 cos ฮธ = 2 โ€“ 2 cos2 ฮธ

2 cos2 ฮธ + 3 cos ฮธ โ€“ 2 = 0

2 cos2 ฮธ + 4 cos ฮธ โ€“ cos ฮธ โ€“ 2 = 0

2 cos ฮธ (cos ฮธ + 2) โ€“ 1(cos ฮธ + 2)

(2 cos ฮธ โ€“ 1) (cos ฮธ + 2) = 0

So, either 2 cos ฮธ โ€“ 1 = 0 or cos ฮธ + 2 = 0

If 2 cos ฮธ โ€“ 1 = 0

cos ฮธ = ยฝ

โ‡’ ฮธ = 60o

And, for cos ฮธ + 2 = 0

โ‡’ cos ฮธ = -2 which is not possible being out of range.

Thus, ฮธ = 60o

(iii) sec2 ฮธ โ€“ 2 tan ฮธ = 0

(1 + tan2 ฮธ) โ€“ 2 tan ฮธ = 0

tan2 ฮธ โ€“ 2 tan ฮธ + 1 = 0

(tan ฮธ โ€“ 1)2 = 0

tan ฮธ โ€“ 1 = 0

โ‡’ tan ฮธ = 1

Thus, ฮธ = 45o

(iv) tan2 ฮธ = 3 (sec ฮธ โ€“ 1)

(sec2 ฮธ โ€“ 1) = 3 sec ฮธ โ€“ 3

sec2 ฮธ โ€“ 1 โ€“ 3 sec ฮธ + 3 = 0

sec2 ฮธ โ€“ 3 sec ฮธ + 2 = 0

sec2 ฮธ โ€“ 2 sec ฮธ โ€“ sec ฮธ + 2 = 0

sec ฮธ (sec ฮธ โ€“ 2) โ€“ 1 (sec ฮธ = 2) = 0

(sec ฮธ โ€“ 1) (sec ฮธ โ€“ 2) = 0

So, either sec ฮธ โ€“ 1 = 0 or sec ฮธ โ€“ 2 = 0

If sec ฮธ โ€“ 1 = 0

sec ฮธ = 1

โ‡’ ฮธ = 0o

And, if sec ฮธ โ€“ 2 = 0

sec ฮธ = 2

โ‡’ ฮธ = 60o

Thus, ฮธ = 0or 60o


๐Ÿ’ก Do You Know?

  • The values of trigonometric ratios are exact for 0ยฐ, 30ยฐ, 45ยฐ, 60ยฐ, and 90ยฐ.
  • These ratios are frequently used in geometry, physics, astronomy, and engineering.
  • The identities like sinยฒฮธ + cosยฒฮธ = 1 help derive all other formulas in trigonometry.

๐Ÿ“˜ Quick Summary Table

Anglesincostanseccoseccot
0ยฐ0101โ€“โ€“
30ยฐ1/2โˆš3/21/โˆš32/โˆš32โˆš3
45ยฐ1/โˆš21/โˆš21โˆš2โˆš21
60ยฐโˆš3/21/2โˆš322/โˆš31/โˆš3
90ยฐ10โ€“โ€“10

Trigonmetric Identities Table Summary

Identities NameIdentities
 Pythagorean Identitiessin2ฮธ + cos2ฮธ = 1
1 + tan2ฮธ = sec2ฮธ
1 + cot2ฮธ = cosec2ฮธ
 Reciprocal Identitiescosec ฮธ = 1/sin ฮธ 
sec ฮธ = 1/cos ฮธ
cot ฮธ = 1/tan ฮธ 
 Quotient Identitiestan ฮธ = sin ฮธ/cos ฮธ
cot ฮธ = cos ฮธ/sin ฮธ

โฌ…๏ธ Trigonometry Class 10 Solved Problems and Examples, Prove Identities by Given Angle Trigonometric Ratios NTSE JEE Foundation Important Solved Examples and Problems โžก๏ธ

๐Ÿ“š Buy Study Material & Join Our Coaching

For premium study materials specially designed for JEE, NEET, NDA, CDS, AFCAT, SSC Exams, visit our official study material portal:
๐Ÿ‘‰ https://publishers.anandclasses.co.in/

For JEE/NEET Notes : Visit https://anandclasses.in/

For NDA Notes : Visit https://nda.anandclasses.in/

For SSC Notes : Visit https://ssc.anandclasses.in/

For CDS, AFCAT Notes : Visit https://cds-afcat.anandclasses.in/

To enroll in our offline or online coaching programs, visit our coaching center website:
๐Ÿ‘‰ https://anandclasses.co.in/

๐Ÿ“ž Call us directly at: +91-94631-38669

๐Ÿ’ฌ WhatsApp Us Instantly

Need quick assistance or want to inquire about classes and materials?

๐Ÿ“ฒ Click below to chat instantly on WhatsApp:
๐Ÿ‘‰ Chat on WhatsApp

๐ŸŽฅ Watch Video Lectures

Get access to high-quality video lessons, concept explainers, and revision tips by subscribing to our official YouTube channel:
๐Ÿ‘‰ Neeraj Anand Classes โ€“ YouTube Channel

RELATED TOPICS