Trigonometry JEE Foundation Important Solved Problems and Examples

⭐⭐⭐✩ (3.8/5 from 161 reviews)

Prove the Following Problems


 sin4 A – cos4 A = 2 sin2 A – 1

Solution:

Taking L.H.S,

sin4 A – cos4 A

= (sinA)2 β€“ (cos2 A)2

= (sin2 A + cos2 A) (sin2 A – cos2 A)

= sin2A – cos2A

= sin2A – (1 – sin2A) [Since, cos2 A = 1 – sin2 A]

= 2sin2 A – 1

– Hence Proved


(1 – tan A)2 + (1 + tan A)2 = 2 sec2 A

Solution:

Taking L.H.S,

(1 – tan A)2 + (1 + tan A)2

= (1 + tan2 A + 2 tan A) + (1 + tan2 A – 2 tan A)

= 2 (1 + tan2 A)

= 2 sec2 A [Since, 1 + tan2 A = sec2 A]

– Hence Proved


cosec4 A – cosec2 A = cot4 A + cot2 A

Solution:

cosec4 A – cosec2 A

= cosec2 A(cosec2 A – 1)

= (1 + cot2 A) (1 + cot2 A – 1)

= (1 + cot2 A) cot2 A

= cot4 A + cot2 A = R.H.S

– Hence Proved


(cosec A + sin A) (cosec A – sin A) = cot2 A + cos2 A

Solution:

Taking L.H.S,

(cosec A + sin A) (cosec A – sin A)

= cosec2 A – sin2 A

= (1 + cotA) – (1 – cos2 A)

= cotA + cos2 A = R.H.S

– Hence Proved


(sec A – cos A)(sec A + cos A) = sin2 A + tan2 A

Solution:

Taking L.H.S,

(sec A – cos A)(sec A + cos A)

= (sec2 A – cos2 A)

= (1 + tan2 A) – (1 – sin2 A)

= sin2 A + tan2 A = RHS

– Hence Proved


(cos A + sin A)2 + (cosA – sin A)2 = 2

Solution:

Taking L.H.S,

(cos A + sin A)2 + (cosA – sin A)2

= cos2 A + sin2 A + 2cos A sin A + cos2 A – 2cosA.sinA

= 2 (cos2 A + sin2 A) = 2 = R.H.S

– Hence Proved


(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A

Solution:

Taking LHS,

(sin A + cosec A)2 + (cos A + sec A)2

= sin2 A + cosec2 A + 2 sin A cosec A + cos2 A + sec2 A + 2cos A sec A

= (sin2 A + cos2 A ) + cosec2 A + sec2 A + 2 + 2

= 1 + cosec2 A + sec2 A + 4

= 5 + (1 + cot2 A) + (1 + tan2 A)

= 7 + tan2 A + cot2 A = RHS

– Hence Proved


sec2 A. cosec2 A = tan2 A + cot2 A + 2

Solution:

Taking,

RHS = tan2 A + cot2 A + 2 = tan2 A + cot2 A + 2 tan A. cot A

= (tan A + cot A)2 = (sin A/cos A + cos A/ sin A)2

= (sin2 A + cos2 A/ sin A.cos A)2 = 1/ cos2 A. sin2 A

= sec2 A. cosec2 A = LHS

– Hence Proved


 cot2 A – 1/sin2 A + 1 = 0

Solution:

cot2 A – 1/sin2 A + 1 = 0

LHS = cot2 A – 1/sin2 A + 1

We know that

1/sin A = cosec A

= cot2 A – cosec2 A + 1

= (1 + cot2 A) – cosec2 A

We know that 1 + cot2 A = cosec2 A

= cosec2 A – cosec2 A

= 0

= RHS

Therefore, LHS = RHS.


1/(1 + tan2 A) + 1/(1 + cot2 A) = 1

Solution:

LHS = 1/(1 + tan2 A) + 1/(1 + cot2 A)

We know that

sec2 A – tan2 A = 1

sec2 A = 1 + tan2 A

cosec2 A – cot2 A = 1

cosec2 A = 1 + cot2 A

So we get

= 1/sec2 A + 1/cosec2 A

Here 1/sec A = cos A and 1/cosec A = sin A

= cos2 A + sin2 A

= 1

= RHS

Therefore, LHS = RHS.


If sin A + cosec A = 2; Find the value of sin2 A + cosec2 A.

Solution:

Given, sin A + cosec A = 2

On squaring on both sides, we have

(sin A + cosec A)2 = 22

sin2 A + cosec2 A + 2sinA. cosec A = 4

sin2 A + cosec2 A + 2 = 4 [As sin A. cosec A = sin A x 1/sin A = 1]

sin2 A + cosec2 A = 4 – 2 = 2

Hence, the value of (sin2 A + cosec2 A) is 2


If x cos A + y sin A = m and x sin A – y cos A = n, then prove that: x2 + y2 = m2 + n2 

Solution:

Taking RHS,

m2 + n2

= (x cos A + y sin A)2 + (x sin A – y cos A)2

= x2 cos2 A + y2 sin2 A + 2xy cos A sin A + x2 sin2 A + y2 cos2 A – 2xy sin A cos A

= x2 (cos2 A + sin2 A) + y2 (sin2 A + cos2 A)

= x2 + y2 [Since, cos2 A + sin2 A = 1]

= RHS


If m = a sec A + b tan A and n = a tan A + b sec A, prove that m2 β€“ n2 = a2 β€“ b2

Solution:

Taking LHS,

m2 β€“ n2

= (a sec A + b tan A)2 β€“ (a tan A + b sec A)2

= a2 sec2 A + b2 tan2 A + 2 ab sec A tan A – a2 tan2 A – b2 sec2 A – 2ab tan A sec A

= a2 (sec2 A – tan2 A) + b2 (tan2 A – sec2 A)

= a2 (1) + b2 (-1) [Since, sec2 A – tan2 A = 1]

= a2 β€“ b2

= RHS


 If sin ΞΈ + cosec ΞΈ = 2, find the value of sin2 ΞΈ + cosec2 ΞΈ.

Solution:

It is given that

sin ΞΈ + cosec ΞΈ = 2

sin ΞΈ + 1/sin ΞΈ = 2

By further calculation

sin2 ΞΈ + 1 = 2 sin ΞΈ

sin2 ΞΈ – 2 sin ΞΈ + 1 = 0

So we get

(sin ΞΈ – 1)2 = 0

sin ΞΈ – 1 = 0

sin ΞΈ = 1

Here

sin2 ΞΈ + cosec2 ΞΈ = sin2 ΞΈ + 1/sin2 ΞΈ

Substituting the values

= 12 + 1/12

= 1 + 1/1

= 1 + 1

= 2


If x = a cos ΞΈ + b sin ΞΈ and y = a sin ΞΈ – b cos ΞΈ, prove that x2 + y2 = a2 + b2.

Solution:

It is given that

x = a cos ΞΈ + b sin ΞΈ …. (1)

y = a sin ΞΈ – b cos ΞΈ …. (2)

By squaring and adding both the equations

x2 + y2 = (a cos ΞΈ + b sin ΞΈ)2 + (a sin ΞΈ – b cos ΞΈ)2

Using the formula

(a + b)2 = a2 + b2 + 2ab and (a – b)2 = a2 + b2 β€“ 2ab

= [(a cos ΞΈ)2 + (b sin ΞΈ)2 + 2 (a cos ΞΈ) (b sin ΞΈ)] + [(a sin ΞΈ)2 + (b cos ΞΈ)2 β€“ 2 (a sin ΞΈ) (b cos ΞΈ)]

By further calculation

= a2 cos2 ΞΈ + b2 sin2 ΞΈ + 2 ab sin ΞΈ cos ΞΈ + a2 sin2 ΞΈ + b2 cos2 ΞΈ – 2 ab sin ΞΈ cos ΞΈ

= a2 cos2 ΞΈ + b2 sin2 ΞΈ + a2 sin2 ΞΈ + b2 cos2 ΞΈ

So we get

= a2 (cos2 ΞΈ + sin2 ΞΈ) + b2 (sin2 ΞΈ + cos2 ΞΈ)

Here sin2 ΞΈ + cos2 ΞΈ = 1

= a2 (1) + b2 (1)

= a2 + b2

Therefore, x2 + y2 = a2 + b2.


 If 2 cos ΞΈ = √3, prove that 3 sin ΞΈ – 4 sin3 ΞΈ = 1.

Solution:

It is given that

2 cos θ = √3

cos θ = √3/2

We know that

sin2 ΞΈ = 1 – cos2 ΞΈ

Substituting the values

sin2 ΞΈ = 1 – (√3/2)2

sin2 ΞΈ = 1 – 3/4

sin2 ΞΈ = ΒΌ

sin θ = √ 1/4 = 1/2

Consider

LHS = 3 sin ΞΈ – 4 sin3 ΞΈ

It can be written as

= sin ΞΈ (3 – 4 sin2 ΞΈ)

Substituting the values

= 1/2 (3 – 4 Γ— ΒΌ)

= 1/2 (3 – 1)

= 1/2 Γ— 2

= 1

= RHS

Therefore, proved.


 If sin ΞΈ + cosec ΞΈ = 10/3, find the value of sin2 ΞΈ + cosec2 ΞΈ.

Solution:

It is given that

sin ΞΈ + cosec ΞΈ = 10/3

By squaring on both sides

(sin ΞΈ + cosec ΞΈ)2 = (10/3)2

Expanding using formula (a + b)2 = a2 + b2 + 2ab

sin2 ΞΈ + cosec2 ΞΈ + 2 sin ΞΈ cosec ΞΈ = 100/9

We know that sin ΞΈ = 1/cosec ΞΈ

sin2 ΞΈ + cosec2 ΞΈ + 2 sin ΞΈ Γ— 1/ sin ΞΈ = 100/9

By further calculation

sin2 ΞΈ + cosec2 ΞΈ + 2 = 100/9

sin2 ΞΈ + cosec2 ΞΈ = 100/9 – 2

Taking LCM

sin2 ΞΈ + cosec2 ΞΈ = (100 – 18)/9 = 82/9

So we get

sin2 ΞΈ + cosec2 ΞΈ = 82/9


Prove that : tan A + cot A = sec A cosec A 

Solution:

L.H.S. = tan A + cot A

= sin A/cos A + cos A/sin A

= (sin2 A + cos2 A)/ (sin A cos A)

= 1/ (sin A cos A)

= sec A cosec A

= R.H.S


Prove that : (1 + tan A)2 + (1 – tan A)2 = 2 sec2 A

Solution:

L.H.S. = (1 + tan A)2 + (1 – tan A)2

= 1 + 2 tan A + tan2 A + 1 – 2 tan A + tan2 A

= 2 + 2 tan2 A

= 2(1 + tan2 A) [As 1 + tan2 A = sec2 A]

= 2 sec2 A

= R.H.S.


Prove that : secA + cosec2 A = sec2 A. cosec2 A

Solution:

L.H.S = secA + cosec2 A

= 1/cos2 A + 1/sin2 A

= (sin2 A + cos2 A)/ (sin2 A cos2 A)

= 1/ (sin2 A cos2 A)

= sec2 A cosec2 A = R.H.S


Prove that : cosec4 ΞΈ – cosec2 ΞΈ = cot4 ΞΈ + cot2 ΞΈ 

Solution:

L.H.S. = cosec4 ΞΈ – cosec2 ΞΈ

= cosec2 ΞΈ (cosec2 ΞΈ – 1)

= cosec2 ΞΈ cot2 ΞΈ [cosec2 ΞΈ – 1 = cot2 ΞΈ]

= (cot2 ΞΈ + 1) cot2 ΞΈ

= cot4 ΞΈ + cot2 ΞΈ

= R.H.S.


Prove that : 2 sec2 ΞΈ – sec4 ΞΈ – 2 cosec2 ΞΈ + cosec4 ΞΈ = cot4 ΞΈ – tan4 ΞΈ.

Solution:

L.H.S. = 2 sec2 ΞΈ – sec4 ΞΈ – 2 cosec2 ΞΈ + cosec4 ΞΈ

= 2 (tan2 ΞΈ + 1) – (tan2 ΞΈ + 1)2 β€“ 2 (1 + cot2 ΞΈ) + (1 + cot2 ΞΈ)2

= 2 tan2 ΞΈ + 2 – (tan4 ΞΈ + 2 tan2 ΞΈ + 1) – 2 – 2 cot2 ΞΈ + (1 + 2 cotΞΈ + cot4 ΞΈ)

= 2 tan2 ΞΈ + 2 – tan4 ΞΈ – 2 tan2 ΞΈ – 1 – 2 – 2 cot2 ΞΈ + 1 + 2 cotΞΈ + cot4 ΞΈ

= cot4 ΞΈ – tan4 ΞΈ = R.H.S.


Prove that : sec4 A – tan4 A = 1 + 2 tan2 A

Solution:

sec4 A – tan4 A = 1 + 2 tan2 A

L.H.S. = sec4 A – tan4 A

= (sec2 A – tan2 A) (sec2 A + tan2 A)

= (1 + tan4 A – tan4 A) (1 + tan4 A + tan4 A) [As sec2 A = tan4 A + 1]

= 1 (1 + 2 tan2 A)

= 1 + 2 tan2 A = R.H.S.


 If 7 sin2 ΞΈ + 3 cos2 ΞΈ = 4, 0Β° ≀ ΞΈ ≀ 90Β°, then find the value of ΞΈ.

Solution:

Given,

7 sin2 ΞΈ + 3 cos2 ΞΈ = 4, 0Β° ≀ ΞΈ ≀ 90Β°

3 sin2 ΞΈ + 3 cos2 ΞΈ + 4 sin2 ΞΈ = 4

3 (sin2 ΞΈ + 3 cos2 ΞΈ) + 4 sin2 ΞΈ = 4

3 (1) + 4 sin2 ΞΈ = 4

4 sin2 ΞΈ = 4 – 3

sin2 ΞΈ = ΒΌ

Taking square-root on both sides, we get

sin ΞΈ = Β½

Thus, ΞΈ = 30o


If sec ΞΈ + tan ΞΈ = m and sec ΞΈ – tan ΞΈ = n, prove that mn = 1.

Solution:

Given,

sec ΞΈ + tan ΞΈ = m

sec ΞΈ – tan ΞΈ = n

Now,

mn = (sec ΞΈ + tan ΞΈ) (sec ΞΈ – tan ΞΈ)

= sec2 ΞΈ – tan2 ΞΈ = 1

Thus, mn = 1


 If x = h + a cos ΞΈ and y = k + a sin ΞΈ, prove that (x – h)2 + (y – k)2 = a2.

Solution:

Given,

x = h + a cos ΞΈ

y = k + a sin ΞΈ

Now,

x – h = a cos ΞΈ

y – k = a sin ΞΈ

On squaring and adding, we get

(x – h)2 + (y – k)2 = a2 cos2 ΞΈ + a2 sin2 ΞΈ

= a(sin2 ΞΈ + cos2 ΞΈ)

= a2 (1) [Since, sin2 ΞΈ + cos2 ΞΈ = 1]

– Hence proved


Prove that : sin2 ΞΈ + cos4 ΞΈ = cos2 ΞΈ + sin4 ΞΈ 

Solution :

sin2 ΞΈ + cos4 ΞΈ = cos2 ΞΈ + sin4 ΞΈ

L.H.S. = sin2 ΞΈ + cos4 ΞΈ

= (1 – cos2 ΞΈ) + cos4 ΞΈ

= cos4 ΞΈ – cos2 ΞΈ + 1

= cos2 ΞΈ (cos2 ΞΈ – 1) + 1

= cos2 ΞΈ (- sin2 ΞΈ) + 1

= 1 – sin2 ΞΈ cos2 ΞΈ

Now,

R.H.S. = cos2 ΞΈ + sin4 ΞΈ

= (1 – sin2 ΞΈ) + sin4 ΞΈ

= sin4 ΞΈ – sin2 ΞΈ + 1

= sin2 ΞΈ (sin2 ΞΈ – 1) + 1

= sin2 ΞΈ (-cos2 ΞΈ) + 1

= 1 – sin2 ΞΈ cos2 ΞΈ

Hence, L.H.S. = R.H.S.


Prove that : 2 (sin6 ΞΈ + cos6 ΞΈ) – 3 (sin4 ΞΈ + cos4 ΞΈ) + 1 = 0

Solution:

Given,

2 (sin6 ΞΈ + cos6 ΞΈ) – 3 (sin4 ΞΈ + cos4 ΞΈ) + 1 = 0

L.H.S. = 2 (sin6 ΞΈ + cos6 ΞΈ) – 3 (sin4 ΞΈ + cos4 ΞΈ) + 1

= 2 [(sin2 ΞΈ)3 + (cos2 ΞΈ)3] – 3 (sin4 ΞΈ + cos4 ΞΈ) + 1

= 2 [(sin2 ΞΈ + cos2 ΞΈ) (sin4 ΞΈ + cos4 ΞΈ – sin2 ΞΈ cos2 ΞΈ)] – 3 (sin4 ΞΈ + cos4 ΞΈ) + 1

= 2 (sin4 ΞΈ + cos4 ΞΈ – sin2 ΞΈ cos2 ΞΈ) – 3 (sin4 ΞΈ + cos4 ΞΈ) + 1

= 2 sin4 ΞΈ + 2 cos4 ΞΈ – 2 sin2 ΞΈ cos2 ΞΈ – 3 sin4 ΞΈ – 3 cos4 ΞΈ + 1

= 1 – sin4 ΞΈ – cos4 ΞΈ – 2 sin2 ΞΈ cos2 ΞΈ

= 1 – [sin4 ΞΈ + cos4 ΞΈ + 2 sin2 ΞΈ cos2 ΞΈ]

= 1 – 1

= 0 = R.H.S.


When 0Β° < ΞΈ < 90Β°, solve the following equations: 

(i) 2 cos2 ΞΈ + sin ΞΈ – 2 = 0 

(ii) 3 cos ΞΈ = 2 sin2 ΞΈ 

(iii) sec2 ΞΈ – 2 tan ΞΈ = 0 

(iv) tan2 ΞΈ = 3 (sec ΞΈ – 1).

Solution:

Given, 0Β° < ΞΈ < 90Β°

(i) 2 cos2 ΞΈ + sin ΞΈ – 2 = 0

2 (1 – sin2 ΞΈ) + sin ΞΈ – 2 = 0

2 – 2 sin2 ΞΈ + sin ΞΈ – 2 = 0

– 2 sin2 ΞΈ + sin ΞΈ = 0

sin ΞΈ (1 – 2 sin ΞΈ) = 0

So, either sin ΞΈ = 0 or 1 – 2 sin ΞΈ = 0

If sin ΞΈ = 0

β‡’ ΞΈ = 0o

And, if 1 – 2 sin ΞΈ = 0

sin ΞΈ = Β½

β‡’ ΞΈ = 30o

Thus, ΞΈ = 0o or 30o

(ii) 3 cos ΞΈ = 2 sin2 ΞΈ

3 cos ΞΈ = 2 (1 – cos2 ΞΈ)

3 cos ΞΈ = 2 – 2 cos2 ΞΈ

2 cos2 ΞΈ + 3 cos ΞΈ – 2 = 0

2 cos2 ΞΈ + 4 cos ΞΈ – cos ΞΈ – 2 = 0

2 cos ΞΈ (cos ΞΈ + 2) – 1(cos ΞΈ + 2)

(2 cos ΞΈ – 1) (cos ΞΈ + 2) = 0

So, either 2 cos ΞΈ – 1 = 0 or cos ΞΈ + 2 = 0

If 2 cos ΞΈ – 1 = 0

cos ΞΈ = Β½

β‡’ ΞΈ = 60o

And, for cos ΞΈ + 2 = 0

β‡’ cos ΞΈ = -2 which is not possible being out of range.

Thus, ΞΈ = 60o

(iii) sec2 ΞΈ – 2 tan ΞΈ = 0

(1 + tan2 ΞΈ) – 2 tan ΞΈ = 0

tan2 ΞΈ – 2 tan ΞΈ + 1 = 0

(tan ΞΈ – 1)2 = 0

tan ΞΈ – 1 = 0

β‡’ tan ΞΈ = 1

Thus, ΞΈ = 45o

(iv) tan2 ΞΈ = 3 (sec ΞΈ – 1)

(sec2 ΞΈ – 1) = 3 sec ΞΈ – 3

sec2 ΞΈ – 1 – 3 sec ΞΈ + 3 = 0

sec2 ΞΈ – 3 sec ΞΈ + 2 = 0

sec2 ΞΈ – 2 sec ΞΈ – sec ΞΈ + 2 = 0

sec ΞΈ (sec ΞΈ – 2) – 1 (sec ΞΈ = 2) = 0

(sec ΞΈ – 1) (sec ΞΈ – 2) = 0

So, either sec ΞΈ – 1 = 0 or sec ΞΈ – 2 = 0

If sec ΞΈ – 1 = 0

sec ΞΈ = 1

β‡’ ΞΈ = 0o

And, if sec ΞΈ – 2 = 0

sec ΞΈ = 2

β‡’ ΞΈ = 60o

Thus, ΞΈ = 0or 60o


πŸ’‘ Do You Know?

  • The values of trigonometric ratios are exact for 0Β°, 30Β°, 45Β°, 60Β°, and 90Β°.
  • These ratios are frequently used in geometry, physics, astronomy, and engineering.
  • The identities like sinΒ²ΞΈ + cosΒ²ΞΈ = 1 help derive all other formulas in trigonometry.

πŸ“˜ Quick Summary Table

Anglesincostanseccoseccot
0Β°0101––
30°1/2√3/21/√32/√32√3
45°1/√21/√21√2√21
60°√3/21/2√322/√31/√3
90Β°10––10

Trigonmetric Identities Table Summary

Identities NameIdentities
 Pythagorean Identitiessin2ΞΈ + cos2ΞΈ = 1
1 + tan2ΞΈ = sec2ΞΈ
1 + cot2ΞΈ = cosec2ΞΈ
 Reciprocal Identitiescosec ΞΈ = 1/sin ΞΈ 
sec ΞΈ = 1/cos ΞΈ
cot ΞΈ = 1/tan ΞΈ 
 Quotient Identitiestan ΞΈ = sin ΞΈ/cos ΞΈ
cot ΞΈ = cos ΞΈ/sin ΞΈ

⬅️ Trigonometry Class 10 Solved Problems and Examples, Prove Identities by Given Angle Trigonometric Ratios NTSE JEE Foundation Important Solved Examples and Problems ➑️

πŸ“š Buy Study Material & Join Our Coaching

For premium study materials specially designed for NDA Exam, visit our official study material portal:
πŸ‘‰ https://publishers.anandclasses.co.in/

For JEE/NEET Notes : Visit https://anandclasses.in/

To enroll in our offline or online coaching programs, visit our coaching center website:
πŸ‘‰ https://anandclasses.co.in/

πŸ“ž Call us directly at: +91-94631-38669

πŸ’¬ WhatsApp Us Instantly

Need quick assistance or want to inquire about classes and materials?

πŸ“² Click below to chat instantly on WhatsApp:
πŸ‘‰ Chat on WhatsApp

πŸŽ₯ Watch Video Lectures

Get access to high-quality video lessons, concept explainers, and revision tips by subscribing to our official YouTube channel:
πŸ‘‰ Neeraj Anand Classes – YouTube Channel

RELATED TOPICS