Master JEE Foundation-level Trigonometry with expertly solved problems. Build strong basics, improve accuracy, and boost your confidence for JEE, NDA competitive exams and CBSE Class 10 with our detailed step-by-step solutions.
Prove the Following Problems
sin4 A โ cos4 A = 2 sin2 A โ 1
Solution:
Taking L.H.S,
sin4 A โ cos4 A
= (sin2 A)2 โ (cos2 A)2
= (sin2 A + cos2 A) (sin2 A โ cos2 A)
= sin2A โ cos2A
= sin2A โ (1 โ sin2A) [Since, cos2 A = 1 โ sin2 A]
= 2sin2 A โ 1
โ Hence Proved
(1 โ tan A)2 + (1 + tan A)2 = 2 sec2 A
Solution:
Taking L.H.S,
(1 โ tan A)2 + (1 + tan A)2
= (1 + tan2 A + 2 tan A) + (1 + tan2 A โ 2 tan A)
= 2 (1 + tan2 A)
= 2 sec2 A [Since, 1 + tan2 A = sec2 A]
โ Hence Proved
cosec4 A โ cosec2 A = cot4 A + cot2 A
Solution:
cosec4 A โ cosec2 A
= cosec2 A(cosec2 A โ 1)
= (1 + cot2 A) (1 + cot2 A โ 1)
= (1 + cot2 A) cot2 A
= cot4 A + cot2 A = R.H.S
โ Hence Proved
(cosec A + sin A) (cosec A โ sin A) = cot2 A + cos2 A
Solution:
Taking L.H.S,
(cosec A + sin A) (cosec A โ sin A)
= cosec2 A โ sin2 A
= (1 + cot2 A) โ (1 โ cos2 A)
= cot2 A + cos2 A = R.H.S
โ Hence Proved
(sec A โ cos A)(sec A + cos A) = sin2 A + tan2 A
Solution:
Taking L.H.S,
(sec A โ cos A)(sec A + cos A)
= (sec2 A โ cos2 A)
= (1 + tan2 A) โ (1 โ sin2 A)
= sin2 A + tan2 A = RHS
โ Hence Proved
(cos A + sin A)2 + (cosA โ sin A)2 = 2
Solution:
Taking L.H.S,
(cos A + sin A)2 + (cosA โ sin A)2
= cos2 A + sin2 A + 2cos A sin A + cos2 A โ 2cosA.sinA
= 2 (cos2 A + sin2 A) = 2 = R.H.S
โ Hence Proved
(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A
Solution:
Taking LHS,
(sin A + cosec A)2 + (cos A + sec A)2
= sin2 A + cosec2 A + 2 sin A cosec A + cos2 A + sec2 A + 2cos A sec A
= (sin2 A + cos2 A ) + cosec2 A + sec2 A + 2 + 2
= 1 + cosec2 A + sec2 A + 4
= 5 + (1 + cot2 A) + (1 + tan2 A)
= 7 + tan2 A + cot2 A = RHS
โ Hence Proved
sec2 A. cosec2 A = tan2 A + cot2 A + 2
Solution:
Taking,
RHS = tan2 A + cot2 A + 2 = tan2 A + cot2 A + 2 tan A. cot A
= (tan A + cot A)2 = (sin A/cos A + cos A/ sin A)2
= (sin2 A + cos2 A/ sin A.cos A)2 = 1/ cos2 A. sin2 A
= sec2 A. cosec2 A = LHS
โ Hence Proved
cot2 A โ 1/sin2 A + 1 = 0
Solution:
cot2 A โ 1/sin2 A + 1 = 0
LHS = cot2 A โ 1/sin2 A + 1
We know that
1/sin A = cosec A
= cot2 A โ cosec2 A + 1
= (1 + cot2 A) โ cosec2 A
We know that 1 + cot2 A = cosec2 A
= cosec2 A โ cosec2 A
= 0
= RHS
Therefore, LHS = RHS.
1/(1 + tan2 A) + 1/(1 + cot2 A) = 1
Solution:
LHS = 1/(1 + tan2 A) + 1/(1 + cot2 A)
We know that
sec2 A โ tan2 A = 1
sec2 A = 1 + tan2 A
cosec2 A โ cot2 A = 1
cosec2 A = 1 + cot2 A
So we get
= 1/sec2 A + 1/cosec2 A
Here 1/sec A = cos A and 1/cosec A = sin A
= cos2 A + sin2 A
= 1
= RHS
Therefore, LHS = RHS.
If sin A + cosec A = 2; Find the value of sin2 A + cosec2 A.
Solution:
Given, sin A + cosec A = 2
On squaring on both sides, we have
(sin A + cosec A)2 = 22
sin2 A + cosec2 A + 2sinA. cosec A = 4
sin2 A + cosec2 A + 2 = 4 [As sin A. cosec A = sin A x 1/sin A = 1]
sin2 A + cosec2 A = 4 โ 2 = 2
Hence, the value of (sin2 A + cosec2 A) is 2
If x cos A + y sin A = m and x sin A โ y cos A = n, then prove that: x2 + y2 = m2 + n2
Solution:
Taking RHS,
m2 + n2
= (x cos A + y sin A)2 + (x sin A โ y cos A)2
= x2 cos2 A + y2 sin2 A + 2xy cos A sin A + x2 sin2 A + y2 cos2 A โ 2xy sin A cos A
= x2 (cos2 A + sin2 A) + y2 (sin2 A + cos2 A)
= x2 + y2 [Since, cos2 A + sin2 A = 1]
= RHS
If m = a sec A + b tan A and n = a tan A + b sec A, prove that m2 โ n2 = a2 โ b2
Solution:
Taking LHS,
m2 โ n2
= (a sec A + b tan A)2 โ (a tan A + b sec A)2
= a2 sec2 A + b2 tan2 A + 2 ab sec A tan A โ a2 tan2 A โ b2 sec2 A โ 2ab tan A sec A
= a2 (sec2 A โ tan2 A) + b2 (tan2 A โ sec2 A)
= a2 (1) + b2 (-1) [Since, sec2 A โ tan2 A = 1]
= a2 โ b2
= RHS
If sin ฮธ + cosec ฮธ = 2, find the value of sin2 ฮธ + cosec2 ฮธ.
Solution:
It is given that
sin ฮธ + cosec ฮธ = 2
sin ฮธ + 1/sin ฮธ = 2
By further calculation
sin2 ฮธ + 1 = 2 sin ฮธ
sin2 ฮธ โ 2 sin ฮธ + 1 = 0
So we get
(sin ฮธ โ 1)2 = 0
sin ฮธ โ 1 = 0
sin ฮธ = 1
Here
sin2 ฮธ + cosec2 ฮธ = sin2 ฮธ + 1/sin2 ฮธ
Substituting the values
= 12 + 1/12
= 1 + 1/1
= 1 + 1
= 2
If x = a cos ฮธ + b sin ฮธ and y = a sin ฮธ โ b cos ฮธ, prove that x2 + y2 = a2 + b2.
Solution:
It is given that
x = a cos ฮธ + b sin ฮธ โฆ. (1)
y = a sin ฮธ โ b cos ฮธ โฆ. (2)
By squaring and adding both the equations
x2 + y2 = (a cos ฮธ + b sin ฮธ)2 + (a sin ฮธ โ b cos ฮธ)2
Using the formula
(a + b)2 = a2 + b2 + 2ab and (a โ b)2 = a2 + b2 โ 2ab
= [(a cos ฮธ)2 + (b sin ฮธ)2 + 2 (a cos ฮธ) (b sin ฮธ)] + [(a sin ฮธ)2 + (b cos ฮธ)2 โ 2 (a sin ฮธ) (b cos ฮธ)]
By further calculation
= a2 cos2 ฮธ + b2 sin2 ฮธ + 2 ab sin ฮธ cos ฮธ + a2 sin2 ฮธ + b2 cos2 ฮธ โ 2 ab sin ฮธ cos ฮธ
= a2 cos2 ฮธ + b2 sin2 ฮธ + a2 sin2 ฮธ + b2 cos2 ฮธ
So we get
= a2 (cos2 ฮธ + sin2 ฮธ) + b2 (sin2 ฮธ + cos2 ฮธ)
Here sin2 ฮธ + cos2 ฮธ = 1
= a2 (1) + b2 (1)
= a2 + b2
Therefore, x2 + y2 = a2 + b2.
If 2 cos ฮธ = โ3, prove that 3 sin ฮธ โ 4 sin3 ฮธ = 1.
Solution:
It is given that
2 cos ฮธ = โ3
cos ฮธ = โ3/2
We know that
sin2 ฮธ = 1 โ cos2 ฮธ
Substituting the values
sin2 ฮธ = 1 โ (โ3/2)2
sin2 ฮธ = 1 โ 3/4
sin2 ฮธ = ยผ
sin ฮธ = โ 1/4 = 1/2
Consider
LHS = 3 sin ฮธ โ 4 sin3 ฮธ
It can be written as
= sin ฮธ (3 โ 4 sin2 ฮธ)
Substituting the values
= 1/2 (3 โ 4 ร ยผ)
= 1/2 (3 โ 1)
= 1/2 ร 2
= 1
= RHS
Therefore, proved.
If sin ฮธ + cosec ฮธ = 10/3, find the value of sin2 ฮธ + cosec2 ฮธ.
Solution:
It is given that
sin ฮธ + cosec ฮธ = 10/3
By squaring on both sides
(sin ฮธ + cosec ฮธ)2 = (10/3)2
Expanding using formula (a + b)2 = a2 + b2 + 2ab
sin2 ฮธ + cosec2 ฮธ + 2 sin ฮธ cosec ฮธ = 100/9
We know that sin ฮธ = 1/cosec ฮธ
sin2 ฮธ + cosec2 ฮธ + 2 sin ฮธ ร 1/ sin ฮธ = 100/9
By further calculation
sin2 ฮธ + cosec2 ฮธ + 2 = 100/9
sin2 ฮธ + cosec2 ฮธ = 100/9 โ 2
Taking LCM
sin2 ฮธ + cosec2 ฮธ = (100 โ 18)/9 = 82/9
So we get
sin2 ฮธ + cosec2 ฮธ = 82/9
Prove that : tan A + cot A = sec A cosec A
Solution:
L.H.S. = tan A + cot A
= sin A/cos A + cos A/sin A
= (sin2 A + cos2 A)/ (sin A cos A)
= 1/ (sin A cos A)
= sec A cosec A
= R.H.S
Prove that : (1 + tan A)2 + (1 โ tan A)2 = 2 sec2 A
Solution:
L.H.S. = (1 + tan A)2 + (1 โ tan A)2
= 1 + 2 tan A + tan2 A + 1 โ 2 tan A + tan2 A
= 2 + 2 tan2 A
= 2(1 + tan2 A) [As 1 + tan2 A = sec2 A]
= 2 sec2 A
= R.H.S.
Prove that : sec2 A + cosec2 A = sec2 A. cosec2 A
Solution:
L.H.S = sec2 A + cosec2 A
= 1/cos2 A + 1/sin2 A
= (sin2 A + cos2 A)/ (sin2 A cos2 A)
= 1/ (sin2 A cos2 A)
= sec2 A cosec2 A = R.H.S
Prove that : cosec4 ฮธ โ cosec2 ฮธ = cot4 ฮธ + cot2 ฮธ
Solution:
L.H.S. = cosec4 ฮธ โ cosec2 ฮธ
= cosec2 ฮธ (cosec2 ฮธ โ 1)
= cosec2 ฮธ cot2 ฮธ [cosec2 ฮธ โ 1 = cot2 ฮธ]
= (cot2 ฮธ + 1) cot2 ฮธ
= cot4 ฮธ + cot2 ฮธ
= R.H.S.
Prove that : 2 sec2 ฮธ โ sec4 ฮธ โ 2 cosec2 ฮธ + cosec4 ฮธ = cot4 ฮธ โ tan4 ฮธ.
Solution:
L.H.S. = 2 sec2 ฮธ โ sec4 ฮธ โ 2 cosec2 ฮธ + cosec4 ฮธ
= 2 (tan2 ฮธ + 1) โ (tan2 ฮธ + 1)2 โ 2 (1 + cot2 ฮธ) + (1 + cot2 ฮธ)2
= 2 tan2 ฮธ + 2 โ (tan4 ฮธ + 2 tan2 ฮธ + 1) โ 2 โ 2 cot2 ฮธ + (1 + 2 cot2 ฮธ + cot4 ฮธ)
= 2 tan2 ฮธ + 2 โ tan4 ฮธ โ 2 tan2 ฮธ โ 1 โ 2 โ 2 cot2 ฮธ + 1 + 2 cot2 ฮธ + cot4 ฮธ
= cot4 ฮธ โ tan4 ฮธ = R.H.S.
Prove that : sec4 A โ tan4 A = 1 + 2 tan2 A
Solution:
sec4 A โ tan4 A = 1 + 2 tan2 A
L.H.S. = sec4 A โ tan4 A
= (sec2 A โ tan2 A) (sec2 A + tan2 A)
= (1 + tan4 A โ tan4 A) (1 + tan4 A + tan4 A) [As sec2 A = tan4 A + 1]
= 1 (1 + 2 tan2 A)
= 1 + 2 tan2 A = R.H.S.
If 7 sin2 ฮธ + 3 cos2 ฮธ = 4, 0ยฐ โค ฮธ โค 90ยฐ, then find the value of ฮธ.
Solution:
Given,
7 sin2 ฮธ + 3 cos2 ฮธ = 4, 0ยฐ โค ฮธ โค 90ยฐ
3 sin2 ฮธ + 3 cos2 ฮธ + 4 sin2 ฮธ = 4
3 (sin2 ฮธ + 3 cos2 ฮธ) + 4 sin2 ฮธ = 4
3 (1) + 4 sin2 ฮธ = 4
4 sin2 ฮธ = 4 โ 3
sin2 ฮธ = ยผ
Taking square-root on both sides, we get
sin ฮธ = ยฝ
Thus, ฮธ = 30o
If sec ฮธ + tan ฮธ = m and sec ฮธ โ tan ฮธ = n, prove that mn = 1.
Solution:
Given,
sec ฮธ + tan ฮธ = m
sec ฮธ โ tan ฮธ = n
Now,
mn = (sec ฮธ + tan ฮธ) (sec ฮธ โ tan ฮธ)
= sec2 ฮธ โ tan2 ฮธ = 1
Thus, mn = 1
If x = h + a cos ฮธ and y = k + a sin ฮธ, prove that (x โ h)2 + (y โ k)2 = a2.
Solution:
Given,
x = h + a cos ฮธ
y = k + a sin ฮธ
Now,
x โ h = a cos ฮธ
y โ k = a sin ฮธ
On squaring and adding, we get
(x โ h)2 + (y โ k)2 = a2 cos2 ฮธ + a2 sin2 ฮธ
= a2 (sin2 ฮธ + cos2 ฮธ)
= a2 (1) [Since, sin2 ฮธ + cos2 ฮธ = 1]
โ Hence proved
Prove that : sin2 ฮธ + cos4 ฮธ = cos2 ฮธ + sin4 ฮธ
Solution :
sin2 ฮธ + cos4 ฮธ = cos2 ฮธ + sin4 ฮธ
L.H.S. = sin2 ฮธ + cos4 ฮธ
= (1 โ cos2 ฮธ) + cos4 ฮธ
= cos4 ฮธ โ cos2 ฮธ + 1
= cos2 ฮธ (cos2 ฮธ โ 1) + 1
= cos2 ฮธ (- sin2 ฮธ) + 1
= 1 โ sin2 ฮธ cos2 ฮธ
Now,
R.H.S. = cos2 ฮธ + sin4 ฮธ
= (1 โ sin2 ฮธ) + sin4 ฮธ
= sin4 ฮธ โ sin2 ฮธ + 1
= sin2 ฮธ (sin2 ฮธ โ 1) + 1
= sin2 ฮธ (-cos2 ฮธ) + 1
= 1 โ sin2 ฮธ cos2 ฮธ
Hence, L.H.S. = R.H.S.
Prove that : 2 (sin6 ฮธ + cos6 ฮธ) โ 3 (sin4 ฮธ + cos4 ฮธ) + 1 = 0
Solution:
Given,
2 (sin6 ฮธ + cos6 ฮธ) โ 3 (sin4 ฮธ + cos4 ฮธ) + 1 = 0
L.H.S. = 2 (sin6 ฮธ + cos6 ฮธ) โ 3 (sin4 ฮธ + cos4 ฮธ) + 1
= 2 [(sin2 ฮธ)3 + (cos2 ฮธ)3] โ 3 (sin4 ฮธ + cos4 ฮธ) + 1
= 2 [(sin2 ฮธ + cos2 ฮธ) (sin4 ฮธ + cos4 ฮธ โ sin2 ฮธ cos2 ฮธ)] โ 3 (sin4 ฮธ + cos4 ฮธ) + 1
= 2 (sin4 ฮธ + cos4 ฮธ โ sin2 ฮธ cos2 ฮธ) โ 3 (sin4 ฮธ + cos4 ฮธ) + 1
= 2 sin4 ฮธ + 2 cos4 ฮธ โ 2 sin2 ฮธ cos2 ฮธ โ 3 sin4 ฮธ โ 3 cos4 ฮธ + 1
= 1 โ sin4 ฮธ โ cos4 ฮธ โ 2 sin2 ฮธ cos2 ฮธ
= 1 โ [sin4 ฮธ + cos4 ฮธ + 2 sin2 ฮธ cos2 ฮธ]
= 1 โ 1
= 0 = R.H.S.
When 0ยฐ < ฮธ < 90ยฐ, solve the following equations:
(i) 2 cos2 ฮธ + sin ฮธ โ 2 = 0
(ii) 3 cos ฮธ = 2 sin2 ฮธ
(iii) sec2 ฮธ โ 2 tan ฮธ = 0
(iv) tan2 ฮธ = 3 (sec ฮธ โ 1).
Solution:
Given, 0ยฐ < ฮธ < 90ยฐ
(i) 2 cos2 ฮธ + sin ฮธ โ 2 = 0
2 (1 โ sin2 ฮธ) + sin ฮธ โ 2 = 0
2 โ 2 sin2 ฮธ + sin ฮธ โ 2 = 0
โ 2 sin2 ฮธ + sin ฮธ = 0
sin ฮธ (1 โ 2 sin ฮธ) = 0
So, either sin ฮธ = 0 or 1 โ 2 sin ฮธ = 0
If sin ฮธ = 0
โ ฮธ = 0o
And, if 1 โ 2 sin ฮธ = 0
sin ฮธ = ยฝ
โ ฮธ = 30o
Thus, ฮธ = 0o or 30o
(ii) 3 cos ฮธ = 2 sin2 ฮธ
3 cos ฮธ = 2 (1 โ cos2 ฮธ)
3 cos ฮธ = 2 โ 2 cos2 ฮธ
2 cos2 ฮธ + 3 cos ฮธ โ 2 = 0
2 cos2 ฮธ + 4 cos ฮธ โ cos ฮธ โ 2 = 0
2 cos ฮธ (cos ฮธ + 2) โ 1(cos ฮธ + 2)
(2 cos ฮธ โ 1) (cos ฮธ + 2) = 0
So, either 2 cos ฮธ โ 1 = 0 or cos ฮธ + 2 = 0
If 2 cos ฮธ โ 1 = 0
cos ฮธ = ยฝ
โ ฮธ = 60o
And, for cos ฮธ + 2 = 0
โ cos ฮธ = -2 which is not possible being out of range.
Thus, ฮธ = 60o
(iii) sec2 ฮธ โ 2 tan ฮธ = 0
(1 + tan2 ฮธ) โ 2 tan ฮธ = 0
tan2 ฮธ โ 2 tan ฮธ + 1 = 0
(tan ฮธ โ 1)2 = 0
tan ฮธ โ 1 = 0
โ tan ฮธ = 1
Thus, ฮธ = 45o
(iv) tan2 ฮธ = 3 (sec ฮธ โ 1)
(sec2 ฮธ โ 1) = 3 sec ฮธ โ 3
sec2 ฮธ โ 1 โ 3 sec ฮธ + 3 = 0
sec2 ฮธ โ 3 sec ฮธ + 2 = 0
sec2 ฮธ โ 2 sec ฮธ โ sec ฮธ + 2 = 0
sec ฮธ (sec ฮธ โ 2) โ 1 (sec ฮธ = 2) = 0
(sec ฮธ โ 1) (sec ฮธ โ 2) = 0
So, either sec ฮธ โ 1 = 0 or sec ฮธ โ 2 = 0
If sec ฮธ โ 1 = 0
sec ฮธ = 1
โ ฮธ = 0o
And, if sec ฮธ โ 2 = 0
sec ฮธ = 2
โ ฮธ = 60o
Thus, ฮธ = 0o or 60o
๐ก Do You Know?
- The values of trigonometric ratios are exact for 0ยฐ, 30ยฐ, 45ยฐ, 60ยฐ, and 90ยฐ.
- These ratios are frequently used in geometry, physics, astronomy, and engineering.
- The identities like sinยฒฮธ + cosยฒฮธ = 1 help derive all other formulas in trigonometry.
๐ Quick Summary Table
| Angle | sin | cos | tan | sec | cosec | cot |
|---|---|---|---|---|---|---|
| 0ยฐ | 0 | 1 | 0 | 1 | โ | โ |
| 30ยฐ | 1/2 | โ3/2 | 1/โ3 | 2/โ3 | 2 | โ3 |
| 45ยฐ | 1/โ2 | 1/โ2 | 1 | โ2 | โ2 | 1 |
| 60ยฐ | โ3/2 | 1/2 | โ3 | 2 | 2/โ3 | 1/โ3 |
| 90ยฐ | 1 | 0 | โ | โ | 1 | 0 |
Trigonmetric Identities Table Summary
| Identities Name | Identities |
|---|---|
| Pythagorean Identities | sin2ฮธ + cos2ฮธ = 1 |
| 1 + tan2ฮธ = sec2ฮธ | |
| 1 + cot2ฮธ = cosec2ฮธ | |
| Reciprocal Identities | cosec ฮธ = 1/sin ฮธ |
| sec ฮธ = 1/cos ฮธ | |
| cot ฮธ = 1/tan ฮธ | |
| Quotient Identities | tan ฮธ = sin ฮธ/cos ฮธ |
| cot ฮธ = cos ฮธ/sin ฮธ |

