Trigonometry Class 10 Solved Problems and Examples, Prove Identities by Given Angle

โญโญโญโญโœฉ (4.7/5 from 112 reviews)

[related_inline_dropdown]


If A = 30o, then Prove That:

(i) sin 2A = 2sin A cos A = 2 tan A/(1 + tan2A)

(ii) cos 2A = cos2A โ€“ sin2A = (1 – tan2A)/(1 + tan2A)

(iii) 2 cos2 A โ€“ 1 = 1 โ€“ 2 sin2A

(iv) sin 3A = 3 sin A โ€“ 4 sin3A.

Solution:

(i) Given A = 30o

Sin 2A = sin 2(30o)

= sin 60o = โˆš3/2

2 sin A cos A = 2 sin 30o cos 30o

= 2 (ยฝ) (โˆš3/2) = โˆš3/2

Now,

2 tan A/(1 + tan2A) = 2 tan 300/(1 + tan2 300)

= 2(1/โˆš3)/(1 +(1/โˆš3)2) = โˆš3/2

(ii) cos 2A = cos 2 (300) = cos 60o = ยฝ

Cos2 A โ€“ sin2 A = cos2 30o โ€“ sin2 30o

= 3/4 – 1/4 = 1/2

(1 – tan2A)/(1 + tan2A) = (1 – tan2300)/(1 + tan2300)

= (1 -(1/โˆš3)2)/(1 +(1/โˆš3)2) = 1/2

(iii) 2 cos2 A โ€“ 1 = 2 cos2 30o โ€“ 1

= 2 (ยพ) โ€“ 1 = 3/2 โ€“ 1 = ยฝ

1 โ€“ 2 sin2 A = 1 โ€“ 2 sin2 30o

= 1 โ€“ 2 (ยผ) = ยฝ

2 cos2 A โ€“ 1 = 1 โ€“ sin2 A

(iv) sin 3A = sin 3 (30o)

= sin 90o = 1

3 sin A โ€“ 4 sin3 A = 3 sin 30o โ€“ 4 sin3 30o

= 3 (ยฝ) โ€“ 4 (ยฝ)3 = 3/2 โ€“ ยฝ = 1

Therefore,

Sin 3A = 3 sin A โ€“ 4 sin3 A


If A = B = 45o, show that:

(i) sin (A โ€“ B) = sin A cos B โ€“ cos A sin B

(ii) cos (A + B) = cos A cos B โ€“ sin A sin B

Solution:

Given that A = B = 45o

(i) LHS = sin (A โ€“ B)

= sin (45o โ€“ 45o)

= sin 0o

= 0

RHS = sin A cos B โ€“ cos A sin B

= sin 45o cos 45o โ€“ cos 45o sin 45o

= 1/โˆš2 (1/โˆš2) โ€“ 1/โˆš2 (1/โˆš2)

= 0

Therefore, LHS = RHS

(ii) LHS = cos (A + B)

= cos (45o + 45o)

= cos 90o

= 0

RHS = cos A cos B โ€“ sin A sin B

= cos 45o cos 45o โ€“ sin 45o sin 45o

= 1/โˆš2 (1/โˆš2) โ€“ 1/โˆš2 (1/โˆš2)

= 0

Therefore, LHS = RHS


If A = 30o; show that:

(i) sin 3 A = 4 sin A sin (60o โ€“ A) sin (60o + A)

(ii) (sin A โ€“ cos A)2 = 1 โ€“ sin 2A

(iii) cos 2A = cos4 A โ€“ sin4 A

(iv) (1 – cos 2A)/sin 2A = tan A

(v) (1 + sin 2 A + cos 2 A) / (sin A + cos A) = 2 cos A.

(vi) 4 cos A cos (60o โ€“ A). cos (60o + A) = cos 3A

(vii) (cos3A – cos 3A)/cos A + (sin3A + sin 3A)/sin A = 3

Solution:

Given that A = 30o

(i) According to the question we have

LHS = sin 3A

= sin 3 (30o)

= sin 90o

= 1

RHS = 4 sin A sin (60o โ€“ A) sin (60o + A)

= 4 sin A sin (60o โ€“ 30o) sin (60o + 30o)

= 4 (ยฝ) (ยฝ) (1)

= 1

LHS = RHS

(ii) According to the question we have

LHS = (sin A โ€“ cos A)2

= (sin 30o โ€“ cos 30o)2

= (ยฝ โ€“ โˆš3/2)2

= ยผ + ยพ โ€“ โˆš3/2

= 1 โ€“ โˆš3/2

= (2 โ€“ โˆš3)/2

RHS = 1 โ€“ sin 2A

= 1 โ€“ sin 2 (30o)

= 1 โ€“ sin 60o

= 1 โ€“ โˆš3/2

= (2 โ€“ โˆš3)/2

Therefore, LHS = RHS

(iii) According to the question we have

LHS = cos 2A

= cos 2 (30o)

= cos 60o

= ยฝ

RHS = cos4 A โ€“ sin4 A

= cos4 30o โ€“ sin4 30o

= (โˆš3/2)4 โ€“ (ยฝ)4

= 9/16 โ€“ 1/16

= ยฝ

LHS = RHS

(iv) According to the question we have

LHS = (1 โ€“ cos 2A)/ sin 2A

= 1 โ€“ cos 2(30o)/ sin 2 (30o)

= 1 โ€“ ยฝ/ (โˆš3/2)

= 1/โˆš3

RHS = tan A

= tan 30o

= 1/โˆš3

LHS = RHS

(v) According to the question we have

$$
\text{LHS} = \frac{1 + \sin 2A + \cos 2A}{\sin A + \cos A}
$$
$$
= \frac{1 + \sin 2(30^\circ) + \cos 2(30^\circ)}{\sin 30^\circ + \cos 30^\circ}
$$
$$
= \frac{1 + \frac{\sqrt{3}}{2} + \frac{1}{2}}{\frac{1}{2} + \frac{\sqrt{3}}{2}}
$$
$$
= \frac{1 + \frac{\sqrt{3}}{2} + \frac{1}{2}}{\frac{1}{2} + \frac{\sqrt{3}}{2}}
$$
$$
= \frac{3 + \sqrt{3}}{\sqrt{3} + 1} \times \frac{\sqrt{3} – 1}{\sqrt{3} – 1}
$$
$$
= \frac{3\sqrt{3} – 3 + 3 – \sqrt{3}}{2}
$$
$$
= \frac{2\sqrt{3}}{2}
$$
$$
= \sqrt{3}
$$

RHS = 2 cos A

= 2 cos 30o

= 2 (โˆš3/2)

= โˆš3

(vi) According to the question we have

LHS = 4 cos A cos (60o โ€“ A) cos (60o + A)

= 4 cos A cos (60o โ€“ 30o) cos (60o + 30o)

= 4 cos 30o cos 30o cos 90o

= 4 (โˆš3/2) (โˆš3/2) 0

= 0

RHS = cos 3A

= cos 3 (30o)

= cos 90o

= 0

LHS = RHS

(vii) According to the question we have

$$
\text{LHS} = \frac{\cos^3 A – \cos 3A}{\cos A} + \frac{\sin^3 A + \sin 3A}{\sin A}
$$
$$
= \frac{\cos^3 30^\circ – \cos 3(30^\circ)}{\cos 30^\circ} + \frac{\sin^3 30^\circ + \sin 3(30^\circ)}{\sin 30^\circ}
$$
$$
= \frac{\left( \frac{\sqrt{3}}{2} \right)^3 – 0}{\frac{\sqrt{3}}{2}} + \frac{\left( \frac{1}{2} \right)^3 + 1}{\frac{1}{2}}
$$
$$
= \frac{\frac{\sqrt{3}}{2}}{\frac{\sqrt{3}}{2}} + \frac{9}{8} \times \frac{1}{\frac{1}{2}}
$$
$$
= \left( \frac{\sqrt{3}}{2} \right)^2 + \frac{9}{4}
$$

= ยพ + 9/4

= 12/4

= 3 = RHS

Hence the proof


Do You Know?

  • The values of trigonometric ratios are exact for 0ยฐ, 30ยฐ, 45ยฐ, 60ยฐ, and 90ยฐ.
  • These ratios are frequently used in geometry, physics, astronomy, and engineering.
  • The identities like sinยฒฮธ + cosยฒฮธ = 1 help derive all other formulas in trigonometry.

๐Ÿ“˜ Quick Summary Table

Anglesincostanseccoseccot
0ยฐ0101โ€“โ€“
30ยฐ1/2โˆš3/21/โˆš32/โˆš32โˆš3
45ยฐ1/โˆš21/โˆš21โˆš2โˆš21
60ยฐโˆš3/21/2โˆš322/โˆš31/โˆš3
90ยฐ10โ€“โ€“10

โฌ…๏ธ Trigonometric Identities Class 10 โ€“ Solved Problems & Examples Trigonometry JEE Foundation Important Solved Problems and Examples โžก๏ธ

๐Ÿ“š Buy Study Material & Join Our Coaching

For premium study materials specially designed for JEE, NEET, NDA, CDS, AFCAT, SSC Exams, visit our official study material portal:
๐Ÿ‘‰ https://publishers.anandclasses.co.in/

For JEE/NEET Notes : Visit https://anandclasses.in/

For NDA Notes : Visit https://nda.anandclasses.in/

For SSC Notes : Visit https://ssc.anandclasses.in/

For CDS, AFCAT Notes : Visit https://cds-afcat.anandclasses.in/

To enroll in our offline or online coaching programs, visit our coaching center website:
๐Ÿ‘‰ https://anandclasses.co.in/

๐Ÿ“ž Call us directly at: +91-94631-38669

๐Ÿ’ฌ WhatsApp Us Instantly

Need quick assistance or want to inquire about classes and materials?

๐Ÿ“ฒ Click below to chat instantly on WhatsApp:
๐Ÿ‘‰ Chat on WhatsApp

๐ŸŽฅ Watch Video Lectures

Get access to high-quality video lessons, concept explainers, and revision tips by subscribing to our official YouTube channel:
๐Ÿ‘‰ Neeraj Anand Classes โ€“ YouTube Channel

RELATED TOPICS