Anand Classes provides comprehensive and well-structured NCERT Solutions for Probability Exercise 13.1 of Class 12 Chapter 13, helping students build strong conceptual understanding for board exams and competitive entrance tests. These expertly crafted solutions simplify complex probability concepts, offer step-by-step explanations, and ensure better clarity for solving exam-oriented questions with confidence. Click the print button to download study material and notes.
Access NCERT Solutions for Probability Exercise 13.1 of Class 12 Math Chapter 13
NCERT Question.1 : Given that $E$ and $F$ are events such that $P(E)=0.6$, $P(F)=0.3$ and $P(E \cap F)=0.2$, find $P(E\mid F)$ and $P(F\mid E)$.
Solution
Given
$P(E)=0.6$
$P(F)=0.3$
$P(E \cap F)=0.2$
So,
$$P(F \cap E)=P(E \cap F)=0.2$$
Now,
$$P(E \mid F)=\frac{P(E \cap F)}{P(F)}=\frac{0.2}{0.3}=\frac{2}{3}$$
and
$$P(F \mid E)=\frac{P(F \cap E)}{P(E)}=\frac{0.2}{0.6}=\frac{2}{6}=\frac{1}{3}$$
Final Result
$$\boxed{P(E\mid F)=\frac{2}{3}, P(F\mid E)=\frac{1}{3}}$$
Explore more fully solved probability problems and detailed math explanations with Anand Classes โ perfect for strengthening fundamentals for CBSE, JEE, and competitive exams, along with high-quality study material and downloadable notes.
NCERT Question.2 : Compute $P(A \mid B)$ if $P(B)=0.5$ and $P(A \cap B)=0.32$
Solution
Given
$P(B)=0.5$
$P(A \cap B)=0.32$
Then
$$P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{0.32}{0.5}=\frac{32}{50}=\frac{16}{25}$$
Final Result
$$\boxed{P(A \mid B)=\frac{16}{25}}$$
Strengthen your understanding of conditional probability with detailed, step-by-step explanations from Anand Classes โ ideal for CBSE, JEE, and competitive exams, along with high-quality study notes to boost your preparation.
NCERT Question.3 : If $P(A)=0.8$, $P(B)=0.5$ and $P(B \mid A)=0.4$, find
(i) $P(A \cap B)$
(ii) $P(A \mid B)$
(iii) $P(A \cup B)$
Solution
Given
$P(A)=0.8$
$P(B)=0.5$
$P(B \mid A)=0.4$
(i)
Using
$$P(B \mid A)=\frac{P(A \cap B)}{P(A)}$$
So,
$$0.4=\frac{P(A \cap B)}{0.8}$$
Hence,
$$P(A \cap B)=0.4 \times 0.8=0.32$$
(ii)
Now,
$$P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{0.32}{0.5}=0.64$$
(iii)
Using union formula,
$$P(A \cup B)=P(A)+P(B)-P(A \cap B)$$
So,
$$P(A \cup B)=0.8+0.5-0.32=0.98$$
Final Result
$$\boxed{P(A \cap B)=0.32 ; P(A \mid B)=0.64 ; P(A \cup B)=0.98}$$
Master concepts of conditional probability and set operations with clear, exam-oriented explanations from Anand Classes โ ideal for CBSE, JEE, and competitive exam preparation with reliable study notes.
NCERT Question.4 : Evaluate $P(A \cup B)$ if $2P(A)=P(B)=\dfrac{5}{13}$ and $P(A \mid B)=\dfrac{2}{5}$.
Solution
Given
$$2P(A)=\frac{5}{13}$$
So,
$$P(A)=\frac{1}{2} \times \frac{5}{13}=\frac{5}{26}$$
Also,
$$P(B)=\frac{5}{13}$$
Now,
$$P(A \mid B)=\frac{P(A \cap B)}{P(B)}$$
Thus,
$$\frac{2}{5}=\frac{P(A \cap B)}{\dfrac{5}{13}}$$
So,
$$P(A \cap B)=\frac{2}{5} \times \frac{5}{13}=\frac{2}{13}$$
Now evaluate
$$P(A \cup B)=P(A)+P(B)-P(A \cap B)$$
Hence,
$$P(A \cup B)=\frac{5}{26}+\frac{5}{13}-\frac{2}{13}$$
Convert $\dfrac{5}{13}$ and $\dfrac{2}{13}$ to denominator $26$:
$$P(A \cup B)=\frac{5}{26}+\frac{10}{26}-\frac{4}{26}=\frac{11}{26}$$
Final Result
$$\boxed{P(A \cup B)=\frac{11}{26}}$$
Boost your probability skills with step-wise NCERT solutions from Anand Classes โ perfect for CBSE and JEE preparation, and high-quality study notes.
NCERT Question.5 : If $P(A)=\dfrac{6}{11}$, $P(B)=\dfrac{5}{11}$ and $P(A \cup B)=\dfrac{7}{11}$ find
(i) $P(A \cap B)$
(ii) $P(A \mid B)$
(iii) $P(B \mid A)$
Solution
Given
$P(A)=\dfrac{6}{11}$
$P(B)=\dfrac{5}{11}$
$P(A \cup B)=\dfrac{7}{11}$
(i)
Using
$$P(A \cup B)=P(A)+P(B)-P(A \cap B)$$
So,
$$\frac{7}{11}=\frac{6}{11}+\frac{5}{11}-P(A \cap B)$$
Hence,
$$P(A \cap B)=\frac{11}{11}-\frac{7}{11}=\frac{4}{11}$$
(ii)
Now,
$$P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{\dfrac{4}{11}}{\dfrac{5}{11}}=\frac{4}{5}$$
(iii)
And,
$$P(B \mid A)=\frac{P(B \cap A)}{P(A)}=\frac{\dfrac{4}{11}}{\dfrac{6}{11}}=\frac{2}{3}$$
Final Result
$$\boxed{P(A \cap B)=\frac{4}{11} ; P(A \mid B)=\frac{4}{5} ; P(B \mid A)=\frac{2}{3}}$$
Strengthen your preparation for CBSE and JEE with these clear NCERT probability solutions by Anand Classes offering structured MathJax explanations and reliable study resources for effective learning.
NCERT Question.6 : A coin is tossed three times.
Determine $P(E\mid F)$ in the following cases.
(i) $E$ : head on third toss, $F$ : heads on first two tosses
(ii) $E$ : at least two heads, $F$ : at most two heads
(iii) $E$ : at most two tails, $F$ : at least one tail
Solution
Sample space
$$S=\{HHH, HHT, HTH, THH, TTH, THT, HTT, TTT\}$$
(i)
$E=\{HHH, HTH, THH, TTH\}$ so
$$P(E)=\frac{4}{8}=\frac{1}{2}$$
$F=\{HHH, HHT\}$ so
$$P(F)=\frac{2}{8}=\frac{1}{4}$$
$$E\cap F=\{HHH\}\quad\Rightarrow\quad P(E\cap F)=\frac{1}{8}$$
Therefore
$$P(E\mid F)=\frac{P(E\cap F)}{P(F)}=\frac{\dfrac{1}{8}}{\dfrac{1}{4}}=\frac{1}{2}$$
(ii)
$E=\{HHT, HTH, THH, HHH\}$ so
$$P(E)=\frac{4}{8}=\frac{1}{2}$$
$F=\{HHT, HTH, THH, TTH, THT, HTT, TTT\}$ so
$$P(F)=\frac{7}{8}$$
$$E\cap F=\{HHT, HTH, THH\}\quad\Rightarrow\quad P(E\cap F)=\frac{3}{8}$$
Therefore
$$P(E\mid F)=\frac{P(E\cap F)}{P(F)}=\frac{\dfrac{3}{8}}{\dfrac{7}{8}}=\frac{3}{7}$$
(iii)
$E=\{HHH, HHT, HTH, THH, TTH, THT, HTT\}$ so
$$P(E)=\frac{7}{8}$$
$F=\{HHT, HTH, THH, TTH, THT, HTT, TTT\}$ so
$$P(F)=\frac{7}{8}$$
$$E\cap F=\{HHT, HTH, THH, TTH, THT, HTT\}\quad\Rightarrow\quad P(E\cap F)=\frac{6}{8}$$
Therefore
$$P(E\mid F)=\frac{P(E\cap F)}{P(F)}=\frac{\dfrac{6}{8}}{\dfrac{7}{8}}=\frac{6}{7}$$
Final Result
$$\boxed{P(E\mid F)=\frac{1}{2}, \frac{3}{7}, \frac{6}{7}}$$
Build stronger probability skills with clear NCERT-style solutions from Anand Classes โ perfect for CBSE and JEE preparation, offering concise explanations and high-quality downloadable study notes.
NCERT Question.7 : Determine $P(E \mid F)$ in the following cases when two coins are tossed once:
(i) $E$ : tail appears on one coin, $F$ : one coin shows head
(ii) $E$ : no tail appears, $F$ : no head appears
Solution
Sample space
$$S=\{(H,H),(H,T),(T,H),(T,T)\}$$
(i)
$E$: tail appears on one coin
$$E=\{(H,T),(T,H)\}$$
$$P(E)=\frac{2}{4}=\frac{1}{2}$$
$F$: one coin shows head
$$F=\{(H,T),(T,H)\}$$
$$P(F)=\frac{2}{4}=\frac{1}{2}$$
Intersection
$$E\cap F=\{(H,T),(T,H)\}$$
$$P(E\cap F)=\frac{2}{4}=\frac{1}{2}$$
Thus,
$$P(E\mid F)=\frac{P(E\cap F)}{P(F)}=\frac{\dfrac{1}{2}}{\dfrac{1}{2}}=1$$
(ii)
$E$: no tail appears
$$E=\{(H,H)\}$$
$$P(E)=\frac{1}{4}$$
$F$: no head appears
$$F=\{(T,T)\}$$
$$P(F)=\frac{1}{4}$$
Intersection
$$E\cap F=\varnothing$$
$$P(E\cap F)=0$$
Thus,
$$P(E\mid F)=\frac{P(E\cap F)}{P(F)}=\frac{0}{\dfrac{1}{4}}=0$$
Final Result
$$\boxed{P(E\mid F)=1, 0}$$
Strengthen your understanding of conditional probability with well-structured NCERT solutions from Anand Classes โ ideal for CBSE, JEE, and competitive exam preparation, with clear MathJax steps and high-quality study notes.
NCERT Question.8 : A die is thrown three times.
Determine $P(E \mid F)$ where
$E$ : 4 appears on the third toss
$F$ : 6 and 5 appear respectively on the first two tosses
Solution
A die is thrown 3 times.
S = {(1, 1, 1), …, (1, 6, 6), (2, 1, 1), …, (2, 6, 6), (3, 1, 1), …, (3, 6, 6), (4, 1, 1), …, (4, 6, 6), (5, 1, 1), …, (5, 6, 6), (6, 1, 1), …, (6, 6, 6)}
Sample space has
$$6 \times 6 \times 6 = 216$$
possible outcomes.
Event descriptions
$E$: 4 on the third toss
$$ E=\{(x,y,4) \mid x \in \{1,2,3,4,5,6\}; y \in \{1,2,3,4,5,6\}\} $$
$F$: 6 on the first toss and 5 on the second toss
$$F=\{(6,5,z) \mid z \in \{1,2,3,4,5,6\}\}$$
Probability of $F$
Six outcomes satisfy $F$
$$P(F)=\frac{6}{216}$$
Intersection $E \cap F$
Only one outcome satisfies both $E$ and $F$
$$E \cap F=\{(6,5,4)\}$$
$$P(E \cap F)=\frac{1}{216}$$
Conditional probability
$$P(E \mid F)=\frac{P(E \cap F)}{P(F)}=\frac{\frac{1}{216}}{\frac{6}{216}}=\frac{1}{6}$$
Final Result
$$\boxed{P(E \mid F)=\frac{1}{6}}$$
Master probability concepts with clear NCERT based solutions from Anand Classes designed for strong CBSE and JEE preparation through clean MathJax steps and high quality study notes.

