Probability NCERT Solutions Exercise 13.1 Class 12 Chapter-13 Math Notes PDF Free Download (Set-1)

โญโญโญโญโญ (5/5 from 89326 reviews)

Access NCERT Solutions for Probability Exercise 13.1 of Class 12 Math Chapter 13


NCERT Question.1 : Given that $E$ and $F$ are events such that $P(E)=0.6$, $P(F)=0.3$ and $P(E \cap F)=0.2$, find $P(E\mid F)$ and $P(F\mid E)$.

Solution
Given
$P(E)=0.6$
$P(F)=0.3$
$P(E \cap F)=0.2$

So,
$$P(F \cap E)=P(E \cap F)=0.2$$

Now,
$$P(E \mid F)=\frac{P(E \cap F)}{P(F)}=\frac{0.2}{0.3}=\frac{2}{3}$$

and
$$P(F \mid E)=\frac{P(F \cap E)}{P(E)}=\frac{0.2}{0.6}=\frac{2}{6}=\frac{1}{3}$$

Final Result
$$\boxed{P(E\mid F)=\frac{2}{3}, P(F\mid E)=\frac{1}{3}}$$

Explore more fully solved probability problems and detailed math explanations with Anand Classes โ€” perfect for strengthening fundamentals for CBSE, JEE, and competitive exams, along with high-quality study material and downloadable notes.


NCERT Question.2 : Compute $P(A \mid B)$ if $P(B)=0.5$ and $P(A \cap B)=0.32$

Solution
Given
$P(B)=0.5$
$P(A \cap B)=0.32$

Then
$$P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{0.32}{0.5}=\frac{32}{50}=\frac{16}{25}$$

Final Result
$$\boxed{P(A \mid B)=\frac{16}{25}}$$

Strengthen your understanding of conditional probability with detailed, step-by-step explanations from Anand Classes โ€” ideal for CBSE, JEE, and competitive exams, along with high-quality study notes to boost your preparation.


NCERT Question.3 : If $P(A)=0.8$, $P(B)=0.5$ and $P(B \mid A)=0.4$, find
(i) $P(A \cap B)$
(ii) $P(A \mid B)$
(iii) $P(A \cup B)$

Solution
Given
$P(A)=0.8$
$P(B)=0.5$
$P(B \mid A)=0.4$

(i)
Using
$$P(B \mid A)=\frac{P(A \cap B)}{P(A)}$$

So,
$$0.4=\frac{P(A \cap B)}{0.8}$$

Hence,
$$P(A \cap B)=0.4 \times 0.8=0.32$$

(ii)
Now,
$$P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{0.32}{0.5}=0.64$$

(iii)
Using union formula,
$$P(A \cup B)=P(A)+P(B)-P(A \cap B)$$

So,
$$P(A \cup B)=0.8+0.5-0.32=0.98$$

Final Result
$$\boxed{P(A \cap B)=0.32 ; P(A \mid B)=0.64 ; P(A \cup B)=0.98}$$

Master concepts of conditional probability and set operations with clear, exam-oriented explanations from Anand Classes โ€” ideal for CBSE, JEE, and competitive exam preparation with reliable study notes.


NCERT Question.4 : Evaluate $P(A \cup B)$ if $2P(A)=P(B)=\dfrac{5}{13}$ and $P(A \mid B)=\dfrac{2}{5}$.

Solution
Given
$$2P(A)=\frac{5}{13}$$
So,
$$P(A)=\frac{1}{2} \times \frac{5}{13}=\frac{5}{26}$$

Also,
$$P(B)=\frac{5}{13}$$

Now,
$$P(A \mid B)=\frac{P(A \cap B)}{P(B)}$$

Thus,
$$\frac{2}{5}=\frac{P(A \cap B)}{\dfrac{5}{13}}$$

So,
$$P(A \cap B)=\frac{2}{5} \times \frac{5}{13}=\frac{2}{13}$$

Now evaluate
$$P(A \cup B)=P(A)+P(B)-P(A \cap B)$$

Hence,
$$P(A \cup B)=\frac{5}{26}+\frac{5}{13}-\frac{2}{13}$$

Convert $\dfrac{5}{13}$ and $\dfrac{2}{13}$ to denominator $26$:
$$P(A \cup B)=\frac{5}{26}+\frac{10}{26}-\frac{4}{26}=\frac{11}{26}$$

Final Result
$$\boxed{P(A \cup B)=\frac{11}{26}}$$

Boost your probability skills with step-wise NCERT solutions from Anand Classes โ€” perfect for CBSE and JEE preparation, and high-quality study notes.


NCERT Question.5 : If $P(A)=\dfrac{6}{11}$, $P(B)=\dfrac{5}{11}$ and $P(A \cup B)=\dfrac{7}{11}$ find
(i) $P(A \cap B)$
(ii) $P(A \mid B)$
(iii) $P(B \mid A)$

Solution
Given
$P(A)=\dfrac{6}{11}$

$P(B)=\dfrac{5}{11}$

$P(A \cup B)=\dfrac{7}{11}$

(i)
Using
$$P(A \cup B)=P(A)+P(B)-P(A \cap B)$$

So,
$$\frac{7}{11}=\frac{6}{11}+\frac{5}{11}-P(A \cap B)$$

Hence,
$$P(A \cap B)=\frac{11}{11}-\frac{7}{11}=\frac{4}{11}$$

(ii)
Now,
$$P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{\dfrac{4}{11}}{\dfrac{5}{11}}=\frac{4}{5}$$

(iii)
And,
$$P(B \mid A)=\frac{P(B \cap A)}{P(A)}=\frac{\dfrac{4}{11}}{\dfrac{6}{11}}=\frac{2}{3}$$

Final Result
$$\boxed{P(A \cap B)=\frac{4}{11} ; P(A \mid B)=\frac{4}{5} ; P(B \mid A)=\frac{2}{3}}$$

Strengthen your preparation for CBSE and JEE with these clear NCERT probability solutions by Anand Classes offering structured MathJax explanations and reliable study resources for effective learning.


NCERT Question.6 : A coin is tossed three times.
Determine $P(E\mid F)$ in the following cases.
(i) $E$ : head on third toss, $F$ : heads on first two tosses
(ii) $E$ : at least two heads, $F$ : at most two heads
(iii) $E$ : at most two tails, $F$ : at least one tail

Solution
Sample space
$$S=\{HHH, HHT, HTH, THH, TTH, THT, HTT, TTT\}$$

(i)
$E=\{HHH, HTH, THH, TTH\}$ so
$$P(E)=\frac{4}{8}=\frac{1}{2}$$

$F=\{HHH, HHT\}$ so
$$P(F)=\frac{2}{8}=\frac{1}{4}$$

$$E\cap F=\{HHH\}\quad\Rightarrow\quad P(E\cap F)=\frac{1}{8}$$
Therefore
$$P(E\mid F)=\frac{P(E\cap F)}{P(F)}=\frac{\dfrac{1}{8}}{\dfrac{1}{4}}=\frac{1}{2}$$

(ii)
$E=\{HHT, HTH, THH, HHH\}$ so
$$P(E)=\frac{4}{8}=\frac{1}{2}$$

$F=\{HHT, HTH, THH, TTH, THT, HTT, TTT\}$ so
$$P(F)=\frac{7}{8}$$

$$E\cap F=\{HHT, HTH, THH\}\quad\Rightarrow\quad P(E\cap F)=\frac{3}{8}$$

Therefore
$$P(E\mid F)=\frac{P(E\cap F)}{P(F)}=\frac{\dfrac{3}{8}}{\dfrac{7}{8}}=\frac{3}{7}$$

(iii)
$E=\{HHH, HHT, HTH, THH, TTH, THT, HTT\}$ so
$$P(E)=\frac{7}{8}$$

$F=\{HHT, HTH, THH, TTH, THT, HTT, TTT\}$ so
$$P(F)=\frac{7}{8}$$

$$E\cap F=\{HHT, HTH, THH, TTH, THT, HTT\}\quad\Rightarrow\quad P(E\cap F)=\frac{6}{8}$$

Therefore
$$P(E\mid F)=\frac{P(E\cap F)}{P(F)}=\frac{\dfrac{6}{8}}{\dfrac{7}{8}}=\frac{6}{7}$$

Final Result
$$\boxed{P(E\mid F)=\frac{1}{2}, \frac{3}{7}, \frac{6}{7}}$$

Build stronger probability skills with clear NCERT-style solutions from Anand Classes โ€” perfect for CBSE and JEE preparation, offering concise explanations and high-quality downloadable study notes.


NCERT Question.7 : Determine $P(E \mid F)$ in the following cases when two coins are tossed once:
(i) $E$ : tail appears on one coin, $F$ : one coin shows head
(ii) $E$ : no tail appears, $F$ : no head appears

Solution
Sample space
$$S=\{(H,H),(H,T),(T,H),(T,T)\}$$

(i)

$E$: tail appears on one coin
$$E=\{(H,T),(T,H)\}$$

$$P(E)=\frac{2}{4}=\frac{1}{2}$$

$F$: one coin shows head
$$F=\{(H,T),(T,H)\}$$
$$P(F)=\frac{2}{4}=\frac{1}{2}$$

Intersection
$$E\cap F=\{(H,T),(T,H)\}$$

$$P(E\cap F)=\frac{2}{4}=\frac{1}{2}$$

Thus,
$$P(E\mid F)=\frac{P(E\cap F)}{P(F)}=\frac{\dfrac{1}{2}}{\dfrac{1}{2}}=1$$

(ii)

$E$: no tail appears
$$E=\{(H,H)\}$$

$$P(E)=\frac{1}{4}$$

$F$: no head appears
$$F=\{(T,T)\}$$
$$P(F)=\frac{1}{4}$$

Intersection
$$E\cap F=\varnothing$$
$$P(E\cap F)=0$$

Thus,
$$P(E\mid F)=\frac{P(E\cap F)}{P(F)}=\frac{0}{\dfrac{1}{4}}=0$$

Final Result
$$\boxed{P(E\mid F)=1, 0}$$

Strengthen your understanding of conditional probability with well-structured NCERT solutions from Anand Classes โ€” ideal for CBSE, JEE, and competitive exam preparation, with clear MathJax steps and high-quality study notes.


NCERT Question.8 : A die is thrown three times.
Determine $P(E \mid F)$ where
$E$ : 4 appears on the third toss
$F$ : 6 and 5 appear respectively on the first two tosses

Solution
A die is thrown 3 times.

S = {(1, 1, 1), …, (1, 6, 6), (2, 1, 1), …, (2, 6, 6), (3, 1, 1), …, (3, 6, 6), (4, 1, 1), …, (4, 6, 6), (5, 1, 1), …, (5, 6, 6), (6, 1, 1), …, (6, 6, 6)}

Sample space has
$$6 \times 6 \times 6 = 216$$

possible outcomes.

Event descriptions

$E$: 4 on the third toss
$$ E=\{(x,y,4) \mid x \in \{1,2,3,4,5,6\}; y \in \{1,2,3,4,5,6\}\} $$

$F$: 6 on the first toss and 5 on the second toss
$$F=\{(6,5,z) \mid z \in \{1,2,3,4,5,6\}\}$$

Probability of $F$

Six outcomes satisfy $F$
$$P(F)=\frac{6}{216}$$

Intersection $E \cap F$

Only one outcome satisfies both $E$ and $F$
$$E \cap F=\{(6,5,4)\}$$

$$P(E \cap F)=\frac{1}{216}$$

Conditional probability

$$P(E \mid F)=\frac{P(E \cap F)}{P(F)}=\frac{\frac{1}{216}}{\frac{6}{216}}=\frac{1}{6}$$

Final Result
$$\boxed{P(E \mid F)=\frac{1}{6}}$$

Master probability concepts with clear NCERT based solutions from Anand Classes designed for strong CBSE and JEE preparation through clean MathJax steps and high quality study notes.

โฌ…๏ธ NCERT Solutions Exercise 13.2 (Set-2) NCERT Solutions Exercise 13.1 (Set-2) โžก๏ธ

๐Ÿ“š Buy Study Material & Join Our Coaching

For premium study materials specially designed for JEE, NEET, NDA, CDS, AFCAT, SSC Exams, visit our official study material portal:
๐Ÿ‘‰ https://publishers.anandclasses.co.in/

For JEE/NEET Notes : Visit https://anandclasses.in/

For NDA Notes : Visit https://nda.anandclasses.in/

For SSC Notes : Visit https://ssc.anandclasses.in/

For CDS, AFCAT Notes : Visit https://cds-afcat.anandclasses.in/

To enroll in our offline or online coaching programs, visit our coaching center website:
๐Ÿ‘‰ https://anandclasses.co.in/

๐Ÿ“ž Call us directly at: +91-94631-38669

๐Ÿ’ฌ WhatsApp Us Instantly

Need quick assistance or want to inquire about classes and materials?

๐Ÿ“ฒ Click below to chat instantly on WhatsApp:
๐Ÿ‘‰ Chat on WhatsApp

๐ŸŽฅ Watch Video Lectures

Get access to high-quality video lessons, concept explainers, and revision tips by subscribing to our official YouTube channel:
๐Ÿ‘‰ Neeraj Anand Classes โ€“ YouTube Channel

RELATED TOPICS