NCERT Solutions Trigonometric Functions Miscellaneous Exercise Class 11 Math pdf free download

⭐⭐⭐⭐✩ (4.7/5 from 35789 reviews)

Q.1 : Prove $$2\cos\frac{\pi}{13}\cos\frac{9\pi}{13}+\cos\frac{3\pi}{13}+\cos\frac{5\pi}{13}=0$$

Solution

LHS
$$
=2\cos\frac{\pi}{13}\cos\frac{9\pi}{13}+\cos\frac{3\pi}{13}+\cos\frac{5\pi}{13}
$$

Use $\cos A+\cos B=2\cos\frac{A+B}{2}\cos\frac{A-B}{2}$ on the last two terms:

$$
\cos\frac{3\pi}{13}+\cos\frac{5\pi}{13}
=2\cos\frac{3\pi/13+5\pi/13}{2}\cos\frac{3\pi/13-5\pi/13}{2}
$$

$$
=2\cos\frac{8\pi}{26}\cos\frac{-2\pi}{26}
=2\cos\frac{4\pi}{13}\cos\left(-\frac{\pi}{13}\right)
=2\cos\frac{4\pi}{13}\cos\frac{\pi}{13}.
$$

So

$$
\text{LHS}=2\cos\frac{\pi}{13}\cos\frac{9\pi}{13}+2\cos\frac{4\pi}{13}\cos\frac{\pi}{13}
$$

Factor $2\cos\frac{\pi}{13}$:

$$
\text{LHS}=2\cos\frac{\pi}{13}\big(\cos\frac{9\pi}{13}+\cos\frac{4\pi}{13}\big).
$$

Apply $\cos A+\cos B=2\cos\frac{A+B}{2}\cos\frac{A-B}{2}$ to the bracket:

$$
\cos\frac{9\pi}{13}+\cos\frac{4\pi}{13}
=2\cos\frac{9\pi/13+4\pi/13}{2}\cos\frac{9\pi/13-4\pi/13}{2}
$$

$$
=2\cos\frac{13\pi}{26}\cos\frac{5\pi}{26}
=2\cos\frac{\pi}{2}\cos\frac{5\pi}{26}.
$$

But $\cos\frac{\pi}{2}=0$, therefore the bracket is $0$, so

$$
\text{LHS}=2\cos\frac{\pi}{13}\times 0 \times \cos\frac{5\pi}{26}=0=\text{RHS}.
$$

Hence proved.


Q.2 : Prove $$(\sin 3x + \sin x)\sin x + (\cos 3x – \cos x)\cos x = 0$$

Solution

LHS
$$
=(\sin 3x + \sin x)\sin x + (\cos 3x – \cos x)\cos x
$$

Expand:

$$
=\sin 3x\sin x + \sin^2 x + \cos 3x\cos x – \cos^2 x
$$

Group terms:

$$
=\big(\cos 3x\cos x + \sin 3x\sin x\big) – \big(\cos^2 x – \sin^2 x\big)
$$

Use $\cos A\cos B + \sin A\sin B=\cos(A-B)$ and $\cos^2 A – \sin^2 A=\cos 2A$:

$$
=\cos(3x-x)-\cos 2x
=\cos 2x – \cos 2x = 0.
$$

Hence proved.


Q.3 : Prove $$(\cos x + \cos y)^2 + (\sin x – \sin y)^2 = 4\cos^2\frac{x+y}{2}$$

Solution

LHS
$$
=(\cos x + \cos y)^2 + (\sin x – \sin y)^2
$$

Expand:

$$
=\cos^2 x + \cos^2 y + 2\cos x\cos y
+\sin^2 x + \sin^2 y – 2\sin x\sin y
$$

Group using $\sin^2A+\cos^2A=1$:

$$
=[\sin^2 x+\cos^2 x]+[\sin^2 y+\cos^2 y] + 2(\cos x\cos y – \sin x\sin y)
$$

So

$$
=1+1 + 2\cos(x+y)
=2+2\cos(x+y)
$$

Using $\cos 2A = 2\cos^2 A -1$, write $1+\cos(x+y)=2\cos^2\frac{x+y}{2}$:

$$
2+2\cos(x+y)=2\big[1+\cos(x+y)\big]=2\big[2\cos^2\frac{x+y}{2}\big]
=4\cos^2\frac{x+y}{2}.
$$

Hence proved.


Q.4: Prove $$(\cos x – \cos y)^2 + (\sin x – \sin y)^2 = 4\sin^2\frac{x-y}{2}$$

Solution

LHS
$$
=(\cos x – \cos y)^2 + (\sin x – \sin y)^2
$$

Expand:

$$
=\cos^2 x + \cos^2 y – 2\cos x\cos y
+\sin^2 x + \sin^2 y – 2\sin x\sin y
$$

Group:

$$
=[\sin^2 x+\cos^2 x]+[\sin^2 y+\cos^2 y] – 2(\cos x\cos y + \sin x\sin y)
$$

Use $\sin^2A+\cos^2A=1$ and $\cos x\cos y+\sin x\sin y=\cos(x-y)$:

$$
=1+1 – 2\cos(x-y)
=2 – 2\cos(x-y)
$$

Use $\cos 2A = 1 – 2\sin^2 A$, so $1-\cos(x-y)=2\sin^2\frac{x-y}{2}$:

$$
2 – 2\cos(x-y)=2\big[1-\cos(x-y)\big]
=2\big[2\sin^2\frac{x-y}{2}\big]=4\sin^2\frac{x-y}{2}.
$$

Hence proved.


Q.5 : Prove $$\sin x + \sin 3x + \sin 5x + \sin 7x = 4\cos x\cos 2x\sin 4x$$

Solution :

LHS
$$
=\sin x + \sin 3x + \sin 5x + \sin 7x
$$

Group as two pairs:

$$
=(\sin x + \sin 5x) + (\sin 3x + \sin 7x)
$$

Use $\sin A + \sin B = 2\sin\frac{A+B}{2}\cos\frac{A-B}{2}$:

$$
\sin x + \sin 5x = 2\sin 3x\cos(-2x)=2\sin 3x\cos 2x,
$$

$$
\sin 3x + \sin 7x = 2\sin 5x\cos(-2x)=2\sin 5x\cos 2x.
$$

So

$$
\text{LHS}=2\sin 3x\cos 2x + 2\sin 5x\cos 2x
=2\cos 2x(\sin 3x + \sin 5x).
$$

Apply $\sin A + \sin B$ to the bracket:

$$
\sin 3x + \sin 5x = 2\sin\frac{3x+5x}{2}\cos\frac{3x-5x}{2}
$$

$$=2\sin 4x\cos(-x)$$

$$=2\sin 4x\cos x.$$

Thus

$$
\text{LHS}=2\cos 2x\cdot (2\sin 4x\cos x)
=4\cos x\cos 2x\sin 4x=\text{RHS}.
$$

Hence proved.


Q.6 : $$\frac{(\sin 7x + \sin 5x) + (\sin 9x + \sin 3x)}{(\cos 7x + \cos 5x) + (\cos 9x + \cos 3x)} = \tan 6x$$

Solution :

LHS =
$$\frac{(\sin 7x + \sin 5x) + (\sin 9x + \sin 3x)}{(\cos 7x + \cos 5x) + (\cos 9x + \cos 3x)}$$

Using the identities

$$\sin A + \sin B = 2 \sin\left(\frac{A + B}{2}\right) \cos\left(\frac{A – B}{2}\right)$$
$$\cos A + \cos B = 2 \cos\left(\frac{A + B}{2}\right) \cos\left(\frac{A – B}{2}\right)$$

we get:

$$(\sin 7x + \sin 5x) + (\sin 9x + \sin 3x)$$
$$= 2 \sin\left(\frac{7x + 5x}{2}\right) \cos\left(\frac{7x – 5x}{2}\right) + 2 \sin\left(\frac{9x + 3x}{2}\right) \cos\left(\frac{9x – 3x}{2}\right)$$

$$= 2 \sin 6x \cos x + 2 \sin 6x \cos 3x$$
$$= 2 \sin 6x (\cos x + \cos 3x)$$

Similarly,

$$(\cos 7x + \cos 5x) + (\cos 9x + \cos 3x)$$
$$= 2 \cos\left(\frac{7x + 5x}{2}\right) \cos\left(\frac{7x – 5x}{2}\right) + 2 \cos\left(\frac{9x + 3x}{2}\right) \cos\left(\frac{9x – 3x}{2}\right)$$

$$= 2 \cos 6x \cos x + 2 \cos 6x \cos 3x$$
$$= 2 \cos 6x (\cos x + \cos 3x)$$

Now,

$$
\frac{(\sin 7x + \sin 5x) + (\sin 9x + \sin 3x)}{(\cos 7x + \cos 5x) + (\cos 9x + \cos 3x)}
= \frac{2 \sin 6x (\cos x + \cos 3x)}{2 \cos 6x (\cos x + \cos 3x)}
$$

$$
= \frac{\sin 6x}{\cos 6x} = \tan 6x = \text{RHS}
$$

Hence, proved.


Q.7 : $$\sin 3x + \sin 2x – \sin x = 4 \sin x \cos\frac{x}{2} \cos\frac{3x}{2}$$

Solution :

LHS =
$$\sin 3x + \sin 2x – \sin x$$

Using the identity
$$\sin A – \sin B = 2 \cos\left(\frac{A + B}{2}\right) \sin\left(\frac{A – B}{2}\right),$$
we get:

$$\sin 3x + (\sin 2x – \sin x)$$
$$= \sin 3x + \left[ 2 \cos\left(\frac{2x + x}{2}\right) \sin\left(\frac{2x – x}{2}\right) \right]$$
$$= \sin 3x + 2 \cos\left(\frac{3x}{2}\right) \sin\left(\frac{x}{2}\right)$$

Using $\sin 2A = 2 \sin A \cos A$, we get:

$$\sin 3x = 2 \sin\left(\frac{3x}{2}\right) \cos\left(\frac{3x}{2}\right)$$

Substitute this in LHS:

$$2 \sin\left(\frac{3x}{2}\right) \cos\left(\frac{3x}{2}\right) + 2 \cos\left(\frac{3x}{2}\right) \sin\left(\frac{x}{2}\right)$$
$$= 2 \cos\left(\frac{3x}{2}\right) \left( \sin\left(\frac{3x}{2}\right) + \sin\left(\frac{x}{2}\right) \right)$$

Now using
$$\sin A + \sin B = 2 \sin\left(\frac{A + B}{2}\right) \cos\left(\frac{A – B}{2}\right),$$
we get:

$$2 \cos\left(\frac{3x}{2}\right) \left[ 2 \sin\left(\frac{3x/2 + x/2}{2}\right) \cos\left(\frac{3x/2 – x/2}{2}\right) \right]$$

$$= 2 \cos\left(\frac{3x}{2}\right) \left[ 2 \sin x \cos\left(\frac{x}{2}\right) \right]$$
$$= 4 \sin x \cos\left(\frac{x}{2}\right) \cos\left(\frac{3x}{2}\right)$$

$$= \text{RHS}$$

Hence, proved.


Q.8 : Given: $\tan x = -\dfrac{4}{3}$, $x$ in quadrant II. Find: $\sin\dfrac{x}{2}$, $\cos\dfrac{x}{2}$, $\tan\dfrac{x}{2}$

Solution :

It is given that $x$ is in quadrant II. Therefore,
$$\frac{\pi}{2} < x < \pi$$

Divide by 2:
$$\frac{\pi}{4} < \frac{x}{2} < \frac{\pi}{2}$$

So $\dfrac{x}{2}$ lies in quadrant I.
Hence, $\sin\dfrac{x}{2}$, $\cos\dfrac{x}{2}$ and $\tan\dfrac{x}{2}$ are all positive.

We know that
$$\sec^2 A = 1 + \tan^2 A$$

So,
$$\sec^2 x = 1 + \tan^2 x$$
$$\sec^2 x = 1 + \left(-\frac{4}{3}\right)^2$$
$$\sec^2 x = 1 + \frac{16}{9}$$
$$\sec^2 x = \frac{25}{9}$$

Therefore,
$$\sec x = \pm \frac{5}{3}$$
and
$$\cos x = \pm \frac{3}{5}$$

Since $x$ lies in quadrant II, $\cos x$ is negative.
Hence,
$$\cos x = -\frac{3}{5}$$

We know that
$$\cos x = 2 \cos^2 \frac{x}{2} – 1$$

Substitute the value of $\cos x$:
$$-\frac{3}{5} = 2 \cos^2 \frac{x}{2} – 1$$

Simplify:
$$-\frac{3}{5} + 1 = 2 \cos^2 \frac{x}{2}$$
$$\frac{2}{5} = 2 \cos^2 \frac{x}{2}$$
$$\cos^2 \frac{x}{2} = \frac{1}{5}$$

Since $\frac{x}{2}$ is in quadrant I, $\cos\dfrac{x}{2}$ is positive.
$$\cos \frac{x}{2} = \frac{1}{\sqrt{5}}$$

Now, using $\sin^2 \dfrac{x}{2} + \cos^2 \dfrac{x}{2} = 1$:
$$\sin^2 \frac{x}{2} = 1 – \frac{1}{5}$$
$$\sin^2 \frac{x}{2} = \frac{4}{5}$$

Since $\frac{x}{2}$ lies in quadrant I,
$$\sin \frac{x}{2} = \frac{2}{\sqrt{5}}$$

Now,
$$\tan \frac{x}{2} = \frac{\sin \frac{x}{2}}{\cos \frac{x}{2}}$$
$$\tan \frac{x}{2} = \frac{\frac{2}{\sqrt{5}}}{\frac{1}{\sqrt{5}}}$$
$$\tan \frac{x}{2} = 2$$

Final Answers

$$\sin \frac{x}{2} = \frac{2}{\sqrt{5}}$$
$$\cos \frac{x}{2} = \frac{1}{\sqrt{5}}$$
$$\tan \frac{x}{2} = 2$$


Q.9 : Given: $\cos x = -\dfrac{1}{3}$, $x$ in quadrant III. Find: $\sin\dfrac{x}{2}$, $\cos\dfrac{x}{2}$, $\tan\dfrac{x}{2}$

Solution :

It is given that $x$ lies in quadrant III. Therefore,
$$\pi < x < \frac{3\pi}{2}$$

Divide by 2:
$$\frac{\pi}{2} < \frac{x}{2} < \frac{3\pi}{4}$$

Hence, $\dfrac{x}{2}$ lies in quadrant II.

So $\sin\dfrac{x}{2}$ is positive, but $\cos\dfrac{x}{2}$ and $\tan\dfrac{x}{2}$ are negative.

We know that
$$\cos 2A = 1 – 2 \sin^2 A$$

So,
$$\cos x = 1 – 2 \sin^2 \frac{x}{2}$$

Substitute $\cos x = -\dfrac{1}{3}$:
$$-\frac{1}{3} = 1 – 2 \sin^2 \frac{x}{2}$$

Simplify:
$$1 + \frac{1}{3} = 2 \sin^2 \frac{x}{2}$$
$$\frac{4}{3} = 2 \sin^2 \frac{x}{2}$$
$$\sin^2 \frac{x}{2} = \frac{2}{3}$$

Since $\frac{x}{2}$ lies in quadrant II, $\sin\dfrac{x}{2} > 0$:
$$\sin \frac{x}{2} = \frac{\sqrt{2}}{\sqrt{3}}$$

Now, use the identity
$$\cos 2A = 2 \cos^2 A – 1$$

So,
$$\cos x = 2 \cos^2 \frac{x}{2} – 1$$

Substitute $\cos x = -\dfrac{1}{3}$:
$$-\frac{1}{3} = 2 \cos^2 \frac{x}{2} – 1$$

Simplify:
$$-\frac{1}{3} + 1 = 2 \cos^2 \frac{x}{2}$$
$$\frac{2}{3} = 2 \cos^2 \frac{x}{2}$$
$$\cos^2 \frac{x}{2} = \frac{1}{3}$$

Since $\frac{x}{2}$ lies in quadrant II, $\cos\dfrac{x}{2}$ is negative:
$$\cos \frac{x}{2} = -\frac{1}{\sqrt{3}}$$

Now,
$$\tan \frac{x}{2} = \frac{\sin \frac{x}{2}}{\cos \frac{x}{2}}$$
$$\tan \frac{x}{2} = \frac{\frac{\sqrt{2}}{\sqrt{3}}}{-\frac{1}{\sqrt{3}}}$$
$$\tan \frac{x}{2} = -\sqrt{2}$$

Final Answers

$$\sin \frac{x}{2} = \frac{\sqrt{2}}{\sqrt{3}}$$
$$\cos \frac{x}{2} = -\frac{1}{\sqrt{3}}$$
$$\tan \frac{x}{2} = -\sqrt{2}$$


Q.10 : Given: $\sin x = \dfrac{1}{4}$, $x$ in quadrant II. Find: $\sin\dfrac{x}{2}$, $\cos\dfrac{x}{2}$, $\tan\dfrac{x}{2}$

Solution :

It is given that $x$ lies in quadrant II. Therefore,
$$\frac{\pi}{2} < x < \pi$$

Divide by 2:
$$\frac{\pi}{4} < \frac{x}{2} < \frac{\pi}{2}$$

Hence, $\dfrac{x}{2}$ lies in quadrant I.

So $\sin\dfrac{x}{2}$, $\cos\dfrac{x}{2}$, and $\tan\dfrac{x}{2}$ are all positive.

We know that
$$\cos^2 A = 1 – \sin^2 A$$

So,
$$\cos^2 x = 1 – \sin^2 x$$
$$\cos^2 x = 1 – \left(\frac{1}{4}\right)^2$$
$$\cos^2 x = 1 – \frac{1}{16}$$
$$\cos^2 x = \frac{15}{16}$$

Hence,
$$\cos x = \pm \frac{\sqrt{15}}{4}$$

Since $x$ is in quadrant II, $\cos x < 0$:
$$\cos x = -\frac{\sqrt{15}}{4}$$

Using the half-angle identity:
$$\cos x = 2 \cos^2 \frac{x}{2} – 1$$

Substitute $\cos x = -\frac{\sqrt{15}}{4}$:
$$-\frac{\sqrt{15}}{4} = 2 \cos^2 \frac{x}{2} – 1$$

Simplify:
$$2 \cos^2 \frac{x}{2} = 1 + \frac{\sqrt{15}}{4}$$
$$2 \cos^2 \frac{x}{2} = \frac{4 + \sqrt{15}}{4}$$
$$\cos^2 \frac{x}{2} = \frac{4 + \sqrt{15}}{8}$$

Since $\frac{x}{2}$ is in quadrant I, $\cos\dfrac{x}{2} > 0$:
$$\cos \frac{x}{2} = \frac{\sqrt{4 + \sqrt{15}}}{2\sqrt{2}}$$

Now,
$$\sin^2 \frac{x}{2} = 1 – \cos^2 \frac{x}{2}$$
$$\sin^2 \frac{x}{2} = 1 – \frac{4 + \sqrt{15}}{8}$$
$$\sin^2 \frac{x}{2} = \frac{4 – \sqrt{15}}{8}$$

Hence,
$$\sin \frac{x}{2} = \frac{\sqrt{4 – \sqrt{15}}}{2\sqrt{2}}$$

Finally,
$$\tan \frac{x}{2} = \frac{\sin \frac{x}{2}}{\cos \frac{x}{2}}$$
$$\tan \frac{x}{2} = \frac{\frac{\sqrt{4 – \sqrt{15}}}{2\sqrt{2}}}{\frac{\sqrt{4 + \sqrt{15}}}{2\sqrt{2}}}$$
$$\tan \frac{x}{2} = \frac{\sqrt{4 – \sqrt{15}}}{\sqrt{4 + \sqrt{15}}}$$

Final Answers

$$\sin \frac{x}{2} = \frac{\sqrt{4 – \sqrt{15}}}{2\sqrt{2}}$$
$$\cos \frac{x}{2} = \frac{\sqrt{4 + \sqrt{15}}}{2\sqrt{2}}$$
$$\tan \frac{x}{2} = \frac{\sqrt{4 – \sqrt{15}}}{\sqrt{4 + \sqrt{15}}}$$

NCERT Solutions Exercise-3.3 ➡️

📚 Buy Study Material & Join Our Coaching

For premium study materials specially designed for JEE, NEET, NDA, CDS, AFCAT, SSC Exams, visit our official study material portal:
👉 https://publishers.anandclasses.co.in/

For JEE/NEET Notes : Visit https://anandclasses.in/

For NDA Notes : Visit https://nda.anandclasses.in/

For SSC Notes : Visit https://ssc.anandclasses.in/

For CDS, AFCAT Notes : Visit https://cds-afcat.anandclasses.in/

To enroll in our offline or online coaching programs, visit our coaching center website:
👉 https://anandclasses.co.in/

📞 Call us directly at: +91-94631-38669

💬 WhatsApp Us Instantly

Need quick assistance or want to inquire about classes and materials?

📲 Click below to chat instantly on WhatsApp:
👉 Chat on WhatsApp

🎥 Watch Video Lectures

Get access to high-quality video lessons, concept explainers, and revision tips by subscribing to our official YouTube channel:
👉 Neeraj Anand Classes – YouTube Channel

RELATED TOPICS