NCERT Solutions Integrals Exercise 7.3 Chapter-7 Class 12 Math PDF Notes (Set-2)

⭐⭐⭐⭐⭐ (5/5 from 67256 reviews)

NCERT Question 8: Evaluate the Integral
$$\displaystyle \int \frac{1 – \cos(x)}{1 + \cos(x)}\; dx$$

Solution

$$\displaystyle \int \frac{1 – \cos(x)}{1 + \cos(x)}\; dx$$

First, simplify the integrand using trigonometric identities.

We know:
$$1 – \cos(x) = 2\sin^2\left(\frac{x}{2}\right)$$
$$1 + \cos(x) = 2\cos^2\left(\frac{x}{2}\right)$$

Substitute these values:
$$\frac{1 – \cos(x)}{1 + \cos(x)} = \frac{2\sin^2\left(\frac{x}{2}\right)}{2\cos^2\left(\frac{x}{2}\right)} = \tan^2\left(\frac{x}{2}\right)$$

Thus,
$$\int \frac{1 – \cos(x)}{1 + \cos(x)}\; dx = \int \tan^2\left(\frac{x}{2}\right)\; dx$$

We know the identity:
$$\tan^2\theta = \sec^2\theta – 1$$

So,
$$\int \tan^2\left(\frac{x}{2}\right)\; dx = \int \left[\sec^2\left(\frac{x}{2}\right) – 1\right]\; dx$$

Now integrate term by term:
Let $u = \dfrac{x}{2}$, hence $du = \dfrac{1}{2}\; dx$ or $dx = 2\; du$.

Substitute:
$$\int \left[\sec^2(u) – 1\right]2\; du = 2\int \sec^2(u)\; du – 2\int 1\; du$$

Integrate:
$$= 2\tan(u) – 2u + C$$

Substitute back $u = \dfrac{x}{2}$:
$$= 2\tan\left(\frac{x}{2}\right) – x + C$$

Final Answer

$$\boxed{\displaystyle \int \frac{1 – \cos(x)}{1 + \cos(x)}\; dx = 2\tan\left(\frac{x}{2}\right) – x + C}$$

Enhance your trigonometric integration skills with Anand Classes — precise, step-by-step notes ideal for JEE, NEET, and CBSE aspirants.


NCERT Question 9: Evaluate the Integral
$$\displaystyle \int \frac{\cos(x)}{1+\cos(x)}\; dx$$

Solution

$$\displaystyle \int \frac{\cos(x)}{1+\cos(x)}\; dx$$

Rewrite the integrand by splitting the fraction:
$$\frac{\cos(x)}{1+\cos(x)}=\frac{1+\cos(x)-1}{1+\cos(x)}=1-\frac{1}{1+\cos(x)}$$

So
$$\int \frac{\cos(x)}{1+\cos(x)}\; dx=\int 1\; dx-\int \frac{1}{1+\cos(x)}\; dx = x-\int \frac{1}{1+\cos(x)}\; dx + C$$

Use the half-angle identity $1+\cos(x)=2\cos^2\bigl(\dfrac{x}{2}\bigr)$, hence
$$\frac{1}{1+\cos(x)}=\frac{1}{2\cos^2\bigl(\dfrac{x}{2}\bigr)}=\dfrac{1}{2}\sec^2\bigl(\dfrac{x}{2}\bigr)$$

Thus
$$\int \frac{1}{1+\cos(x)}\; dx=\dfrac{1}{2}\int \sec^2\bigl(\dfrac{x}{2}\bigr)\; dx$$

Let $u=\dfrac{x}{2}\Rightarrow du=\dfrac{1}{2}\;dx\Rightarrow dx=2\;du$. Then
$$\dfrac{1}{2}\int \sec^2\bigl(\dfrac{x}{2}\bigr)\; dx
=\dfrac{1}{2}\cdot 2\int \sec^2(u)\; du
=\int \sec^2(u)\; du
=\tan(u)$$

Substitute back $u=\dfrac{x}{2}$ to get $\tan\bigl(\dfrac{x}{2}\bigr)$.

Therefore the integral is
$$\boxed{\displaystyle \int \frac{\cos(x)}{1+\cos(x)}\; dx = x-\tan\bigl(\dfrac{x}{2}\bigr)+C}$$

Download concise and exam-oriented notes by Anand Classes — perfect for quick revision and practice for JEE, NEET, and CBSE examinations.


NCERT Question 10: Evaluate the Integral
$$\displaystyle \int \sin^4(x)\; dx$$

Solution

$$\displaystyle \int \sin^4(x)\; dx$$

Use the power-reduction identity:
$$\sin^2(x) = \frac{1 – \cos(2x)}{2}$$

Hence,
$$\sin^4(x) = \left(\frac{1 – \cos(2x)}{2}\right)^2 = \frac{1}{4}(1 – 2\cos(2x) + \cos^2(2x))$$

Now substitute $\cos^2(2x) = \dfrac{1 + \cos(4x)}{2}$:

$$\sin^4(x) = \frac{1}{4}\left[1 – 2\cos(2x) + \frac{1 + \cos(4x)}{2}\right]$$

Simplify:
$$\sin^4(x) = \frac{1}{4}\left(\frac{3}{2} – 2\cos(2x) + \frac{1}{2}\cos(4x)\right)$$

$$\sin^4(x) = \frac{3}{8} – \frac{1}{2}\cos(2x) + \frac{1}{8}\cos(4x)$$

Now integrate each term:

$$\int \sin^4(x)\; dx = \int \left(\frac{3}{8} – \frac{1}{2}\cos(2x) + \frac{1}{8}\cos(4x)\right)\; dx$$

Integrate term by term:

$$= \frac{3x}{8} – \frac{1}{2} \times \frac{\sin(2x)}{2} + \frac{1}{8} \times \frac{\sin(4x)}{4} + C$$

Simplify:

$$\boxed{\displaystyle \int \sin^4(x)\; dx = \frac{3x}{8} – \frac{1}{4}\sin(2x) + \frac{1}{32}\sin(4x) + C}$$

Master advanced trigonometric integration with Anand Classes — your trusted source for step-by-step solutions and conceptual clarity for JEE, NEET, and CBSE preparation.


NCERT Question 11: Evaluate the Integral
$$\displaystyle \int \cos^4(2x)\; dx$$

Solution

$$\displaystyle \int \cos^4(2x)\; dx$$

Use the power-reduction identity:
$$\cos^2(\theta) = \frac{1 + \cos(2\theta)}{2}$$

So,
$$\cos^4(2x) = \left(\frac{1 + \cos(4x)}{2}\right)^2 = \frac{1}{4}\left(1 + 2\cos(4x) + \cos^2(4x)\right)$$

Now, apply the identity again to $\cos^2(4x)$:
$$\cos^2(4x) = \frac{1 + \cos(8x)}{2}$$

Substitute it:
$$\cos^4(2x) = \frac{1}{4}\left[1 + 2\cos(4x) + \frac{1 + \cos(8x)}{2}\right]$$

Simplify:
$$\cos^4(2x) = \frac{1}{4}\left(\frac{3}{2} + 2\cos(4x) + \frac{1}{2}\cos(8x)\right)$$

$$\cos^4(2x) = \frac{3}{8} + \frac{1}{2}\cos(4x) + \frac{1}{8}\cos(8x)$$

Now integrate each term:

$$\int \cos^4(2x)\; dx = \int \left(\frac{3}{8} + \frac{1}{2}\cos(4x) + \frac{1}{8}\cos(8x)\right)\; dx$$

Integrate term by term:

$$= \frac{3x}{8} + \frac{1}{2} \times \frac{\sin(4x)}{4} + \frac{1}{8} \times \frac{\sin(8x)}{8} + C$$

Simplify:

$$\boxed{\displaystyle \int \cos^4(2x)\; dx = \frac{3x}{8} + \frac{1}{8}\sin(4x) + \frac{1}{64}\sin(8x) + C}$$

For detailed trigonometric integration notes and expertly solved examples, explore Anand Classes — the trusted choice for JEE, NEET, and CBSE aspirants.


NCERT Question 12: Evaluate the Integral
$$\displaystyle \int \frac{\sin^2(x)}{1+\cos(x)}\; dx$$

Solution

$$\displaystyle \int \frac{\sin^2(x)}{1+\cos(x)}\; dx$$

Simplify the integrand using trigonometric identities.

We know:
$$\sin^2(x) = 1 – \cos^2(x)$$

So,
$$\frac{\sin^2(x)}{1+\cos(x)} = \frac{1 – \cos^2(x)}{1+\cos(x)}$$

Factorize the numerator:
$$1 – \cos^2(x) = (1 – \cos(x))(1 + \cos(x))$$

Hence,
$$\frac{\sin^2(x)}{1+\cos(x)} = 1 – \cos(x)$$

Now the integral becomes:
$$\int \frac{\sin^2(x)}{1+\cos(x)}\; dx = \int (1 – \cos(x))\; dx$$

Integrate term by term:
$$= \int 1\; dx – \int \cos(x)\; dx$$

$$= x – \sin(x) + C$$

Final Answer

$$\boxed{\displaystyle \int \frac{\sin^2(x)}{1+\cos(x)}\; dx = x – \sin(x) + C}$$

Build a stronger foundation in trigonometric identities and integration with Anand Classes — the perfect guide for CBSE, NEET, and JEE aspirants seeking conceptual clarity and accuracy.


NCERT Question 13: Evaluate the Integral
$$\displaystyle \int \frac{\cos(2x)-\cos(2\alpha)}{\cos(x)-\cos(\alpha)}\; dx$$

Solution

$$\displaystyle \int \frac{\cos(2x)-\cos(2\alpha)}{\cos(x)-\cos(\alpha)}\; dx$$

Use the double-angle identity $\cos(2t)=2\cos^2 t-1$. Then the numerator becomes
$$\cos(2x)-\cos(2\alpha)=2\cos^2 x-1- (2\cos^2\alpha-1)
=2\bigl(\cos^2 x-\cos^2\alpha\bigr).$$

Factor the difference of squares:
$$2\bigl(\cos^2 x-\cos^2\alpha\bigr)=2\bigl(\cos x-\cos\alpha\bigr)\bigl(\cos x+\cos\alpha\bigr).$$

Therefore the integrand simplifies to
$$\frac{\cos(2x)-\cos(2\alpha)}{\cos(x)-\cos(\alpha)}
=2\bigl(\cos x+\cos\alpha\bigr).$$

So the integral becomes
$$\int 2\bigl(\cos x+\cos\alpha\bigr)\; dx
=2\int \cos x\; dx + 2\cos\alpha\int 1\; dx.$$

Integrate termwise:
$$2\int \cos x\; dx = 2\sin x,\qquad 2\cos\alpha\int 1\; dx = 2\cos\alpha\; x.$$

Final Answer

$$\boxed{\displaystyle \int \frac{\cos(2x)-\cos(2\alpha)}{\cos(x)-\cos(\alpha)}\; dx
=2\sin x + 2x\cos\alpha + C}$$

Clear, exam-focused solutions and downloadable notes by Anand Classes — ideal for JEE and CBSE preparation.


NCERT Question 14: Evaluate the Integral
$$\displaystyle \int \frac{\cos(x)-\sin(x)}{1+\sin(2x)}\; dx$$

Solution

$$\displaystyle \int \frac{\cos(x)-\sin(x)}{1+\sin(2x)}\; dx$$

Note that
$$1+\sin(2x)=1+2\sin(x)\cos(x)=(\sin(x)+\cos(x))^2.$$

Let
$$u=\sin(x)+\cos(x)\quad\Rightarrow\quad du=(\cos(x)-\sin(x))\; dx.$$

Hence the integral becomes
$$\int \frac{du}{u^2} = -\frac{1}{u}+C.$$

Substituting back,
$$\boxed{\displaystyle \int \frac{\cos(x)-\sin(x)}{1+\sin(2x)}\; dx = -\frac{1}{\sin(x)+\cos(x)} + C}$$

Download concise worked solutions and revision notes by Anand Classes, perfect for JEE and CBSE exam preparation.


NCERT Question 15: Evaluate the Integral
$$\displaystyle \int \tan^3(2x)\sec(2x)\; dx$$

Solution

$$\displaystyle \int \tan^3(2x)\sec(2x)\; dx$$

Let
$$I = \int \tan^3(2x)\sec(2x)\; dx$$

We know that $\tan^2(2x) = \sec^2(2x) – 1$.

Hence,
$$I = \int \tan(2x)\bigl(\sec^2(2x) – 1\bigr)\sec(2x)\; dx$$

Simplify:
$$I = \int \tan(2x)\sec^3(2x)\; dx \;- \int \tan(2x)\sec(2x)\; dx$$

Now let $u = \tan(2x)$, then
$$du = 2\sec^2(2x)\; dx \quad \Rightarrow \quad dx = \frac{du}{2\sec^2(2x)}.$$

Substitute into the integral term by term.

First Term:

$$\int \tan(2x)\sec^3(2x)\; dx = \frac{1}{2}\int u\sec(2x)\; du$$

But $\sec^2(2x) = 1 + u^2 \;\Rightarrow\; \sec(2x) = \sqrt{1 + u^2}$.
So,
$$\frac{1}{2}\int u\sqrt{1+u^2}\; du$$

Let $v = 1 + u^2$, then $dv = 2u\; du \Rightarrow u\; du = \dfrac{dv}{2}.$

Thus,
$$\frac{1}{2}\int u\sqrt{1+u^2}\; du = \frac{1}{4}\int v^{1/2}\; dv = \frac{1}{4} \times \frac{2}{3}v^{3/2} = \frac{1}{6}(1 + u^2)^{3/2}$$

Substitute $u = \tan(2x)$:

$$\frac{1}{6}(1 + u^2)^{3/2}=\frac{1}{6}(1 + \tan^2(2x))^{3/2}=\frac{1}{6}(\sec^2(2x))^{3/2}=\frac{1}{6}\sec^3(2x)$$

Hence,
$$\frac{1}{2}\int u\sqrt{1+u^2}\; du =\frac{1}{6}\sec^3(2x)$$

Second Term:

$$\int \tan(2x)\sec(2x)\; dx = \frac{1}{2}\sec(2x) + C$$

Now combine both results:

$$ I=\int \tan(2x)\sec^3(2x)\; dx \;- \int \tan(2x)\sec(2x)\; dx $$

$$ I = \frac{1}{6}\sec^3(2x) – \frac{1}{2}\sec(2x) + C$$

Final Answer

$$\boxed{\displaystyle \int \tan^3(2x)\sec(2x)\; dx = \frac{1}{6}\sec^3(2x) – \frac{1}{2}\sec^2(2x) + C}$$

Master trigonometric integrals step-by-step with Anand Classes — precise solutions and expertly explained methods for JEE, NEET, and CBSE exams.

⬅️ NCERT Solutions Exercise 7.3 (Set-3) NCERT Solutions Exercise 7.3 ➡️

📚 Buy Study Material & Join Our Coaching

For premium study materials specially designed for JEE, NEET, NDA, CDS, AFCAT, SSC Exams, visit our official study material portal:
👉 https://publishers.anandclasses.co.in/

For JEE/NEET Notes : Visit https://anandclasses.in/

For NDA Notes : Visit https://nda.anandclasses.in/

For SSC Notes : Visit https://ssc.anandclasses.in/

For CDS, AFCAT Notes : Visit https://cds-afcat.anandclasses.in/

To enroll in our offline or online coaching programs, visit our coaching center website:
👉 https://anandclasses.co.in/

📞 Call us directly at: +91-94631-38669

💬 WhatsApp Us Instantly

Need quick assistance or want to inquire about classes and materials?

📲 Click below to chat instantly on WhatsApp:
👉 Chat on WhatsApp

🎥 Watch Video Lectures

Get access to high-quality video lessons, concept explainers, and revision tips by subscribing to our official YouTube channel:
👉 Neeraj Anand Classes – YouTube Channel

RELATED TOPICS