NCERT Solutions Binomial Theorem Miscellaneous Exercise Class 11 Maths | Free PDF Download

โญโญโญโญโญ (5/5 from 39559 reviews)

Question.1 : If $a$ and $b$ are distinct integers, prove that $a – b$ is a factor of $a^n – b^n$, whenever $n$ is a positive integer.

Solution :

To prove that $(a – b)$ divides $(a^n – b^n)$.

We know that

$$a = (a – b) + b$$

Then,

$$a^n = \big((a – b) + b\big)^n$$

Using the Binomial Theorem,

$$a^n = \sum_{k=0}^{n} {}^{n}C_{k}\; (a – b)^{n-k} \;b^{k}$$

Expanding,

$a^n = {}^{n}C_{0}(a – b)^{n} + {}^{n}C_{1}(a – b)^{n-1}b + {}^{n}C_{2}(a – b)^{n-2}b^{2} + \dots + {}^{n}C_{n-1}(a – b)b^{n-1} + {}^{n}C_{n}b^{n}$

Since ${}^{n}C_{0} = 1$ and ${}^{n}C_{n} = 1$,

$$a^n = (a – b)^{n} + n(a – b)^{n-1}b + {}^{n}C_{2}(a – b)^{n-2}b^{2} + \dots + {}^{n}C_{n-1}(a – b)b^{n-1} + b^{n}$$

Subtracting $b^{n}$ from both sides,

$$a^n – b^n = (a – b)^{n} + n(a – b)^{n-1}b + {}^{n}C_{2}(a – b)^{n-2}b^{2} + \dots + {}^{n}C_{n-1}(a – b)b^{n-1}$$

Now take $(a – b)$ common,

$$a^n – b^n = (a – b)\Big[(a – b)^{n-1} + n(a – b)^{n-2}b + {}^{n}C_{2}(a – b)^{n-3}b^{2} + \dots + {}^{n}C_{n-1}b^{n-1}\Big]$$

Let

$$k = (a – b)^{n-1} + n(a – b)^{n-2}b + {}^{n}C_{2}(a – b)^{n-3}b^{2} + \dots + {}^{n}C_{n-1}b^{n-1}$$

Hence,

$$a^n – b^n = (a – b)k$$

Therefore, $(a – b)$ is a factor of $(a^n – b^n)$ whenever $n$ is a positive integer.

โœ… Hence Proved.


Question.2 : Evaluate $(\sqrt{3} + \sqrt{2})^6 – (\sqrt{3} – \sqrt{2})^6$.

Solution :

Using the Binomial Theorem, the expressions $(a + b)^6$ and $(a – b)^6$ can be expanded as follows:

$(a + b)^6 = {}^{6}C_{0}a^{6} + {}^{6}C_{1}a^{5}b + {}^{6}C_{2}a^{4}b^{2} + {}^{6}C_{3}a^{3}b^{3} + {}^{6}C_{4}a^{2}b^{4} + {}^{6}C_{5}ab^{5} + {}^{6}C_{6}b^{6}$

$$(a – b)^6 = {}^{6}C_{0}a^{6} – {}^{6}C_{1}a^{5}b + {}^{6}C_{2}a^{4}b^{2} – {}^{6}C_{3}a^{3}b^{3} + {}^{6}C_{4}a^{2}b^{4} – {}^{6}C_{5}ab^{5} + {}^{6}C_{6}b^{6}$$

Now, subtracting the second expansion from the first:

$$(a + b)^6 – (a – b)^6 = 2\left[{}^{6}C_{1}a^{5}b + {}^{6}C_{3}a^{3}b^{3} + {}^{6}C_{5}ab^{5}\right]$$

Substituting $a = \sqrt{3}$ and $b = \sqrt{2}$, we get

$$(\sqrt{3} + \sqrt{2})^6 – (\sqrt{3} – \sqrt{2})^6 = 2\left[6(\sqrt{3})^5(\sqrt{2}) + 20(\sqrt{3})^3(\sqrt{2})^3 + 6(\sqrt{3})(\sqrt{2})^5\right]$$

Simplify each term:

$(\sqrt{3})^5 = 9\sqrt{3}, \quad (\sqrt{2})^5 = 4\sqrt{2}, \quad (\sqrt{3})^3(\sqrt{2})^3 = 6\sqrt{6}$

So,

$$(\sqrt{3} + \sqrt{2})^6 – (\sqrt{3} – \sqrt{2})^6 = 2\left[6(9\sqrt{3}\sqrt{2}) + 20(6\sqrt{6}) + 6(4\sqrt{2}\sqrt{3})\right]$$

$$(\sqrt{3} + \sqrt{2})^6 – (\sqrt{3} – \sqrt{2})^6 = 2\left[54\sqrt{6} + 120\sqrt{6} + 24\sqrt{6}\right]$$

$$(\sqrt{3} + \sqrt{2})^6 – (\sqrt{3} – \sqrt{2})^6 = 2(\sqrt{6})(198)$$

$$(\sqrt{3} + \sqrt{2})^6 – (\sqrt{3} – \sqrt{2})^6 = 396\sqrt{6}$$

โœ… Final Answer:
$$\boxed{396\sqrt{6}}$$


Question.3 : Find the value of
$$(a^2 + \sqrt{a^2 – 1})^4 + (a^2 – \sqrt{a^2 – 1})^4$$

Using the Binomial Theorem:

$$(x + y)^4 = {}^{4}C_{0}x^4 + {}^{4}C_{1}x^3y + {}^{4}C_{2}x^2y^2 + {}^{4}C_{3}xy^3 + {}^{4}C_{4}y^4$$

$$(x – y)^4 = {}^{4}C_{0}x^4 – {}^{4}C_{1}x^3y + {}^{4}C_{2}x^2y^2 – {}^{4}C_{3}xy^3 + {}^{4}C_{4}y^4$$

Adding both equations:

$$(x + y)^4 + (x – y)^4 = 2\big({}^{4}C_{0}x^4 + {}^{4}C_{2}x^2y^2 + {}^{4}C_{4}y^4\big)$$

Substitute the values:
$${}^{4}C_{0} = 1,\quad {}^{4}C_{2} = 6,\quad {}^{4}C_{4} = 1$$

Hence,
$$(x + y)^4 + (x – y)^4 = 2(x^4 + 6x^2y^2 + y^4)$$

Now, let
$$x = a^2 \quad \text{and} \quad y = \sqrt{a^2 – 1}$$

Substitute these values:
$$(a^2 + \sqrt{a^2 – 1})^4 + (a^2 – \sqrt{a^2 – 1})^4 = 2\big((a^2)^4 + 6(a^2)^2(\sqrt{a^2 – 1})^2 + (\sqrt{a^2 – 1})^4\big)$$

Simplify step by step:
$$(a^2 + \sqrt{a^2 – 1})^4 + (a^2 – \sqrt{a^2 – 1})^4 = 2\big(a^8 + 6a^4(a^2 – 1) + (a^2 – 1)^2\big)$$
$$(a^2 + \sqrt{a^2 – 1})^4 + (a^2 – \sqrt{a^2 – 1})^4 = 2\big(a^8 + 6a^6 – 6a^4 + a^4 – 2a^2 + 1\big)$$
$$(a^2 + \sqrt{a^2 – 1})^4 + (a^2 – \sqrt{a^2 – 1})^4 = 2\big(a^8 + 6a^6 – 5a^4 – 2a^2 + 1\big)$$

Final Answer:
$$\boxed{2a^8 + 12a^6 – 10a^4 – 4a^2 + 2}$$


Question.4 : Find an approximation of $(0.99)^5$ using the first three terms of its expansion.

Solution:

We can write
$$0.99 = 1 – 0.01$$

Now, applying the Binomial Theorem,

$$(1 – 0.01)^5 = {}^{5}C_{0}(1)^5 – {}^{5}C_{1}(1)^4(0.01) + {}^{5}C_{2}(1)^3(0.01)^2 – {}^{5}C_{3}(1)^2(0.01)^3 + \cdots$$

Taking the first three terms of this expansion, we get:
$$(0.99)^5 = {}^{5}C_{0}(1)^5 – {}^{5}C_{1}(1)^4(0.01) + {}^{5}C_{2}(1)^3(0.01)^2$$

Substitute the binomial coefficients:
$$(0.99)^5 = 1 – 5(0.01) + 10(0.01)^2$$

Simplify step by step:
$$(0.99)^5 = 1 – 0.05 + 0.001$$
$$(0.99)^5 = 0.951$$

Approximation:
$$\boxed{(0.99)^5 \approx 0.951}$$


Question.5 : Expand using Binomial Theorem $$(1+\frac{x}{2}-\frac{2}{x})^4, \quad x\neq 0$$

Solution:

Step 1: Grouping terms for binomial expansion

$$(1+\frac{x}{2}-\frac{2}{x})^4 = \Big[(1+\frac{x}{2}) – \frac{2}{x}\Big]^4$$

Comparing with the standard binomial form $(a+b)^n$, we have:

$$\mathbf{a = (1+\frac{x}{2})}, \quad \mathbf{b = -\frac{2}{x}}, \quad \mathbf{n = 4}$$

Step 2: Apply Binomial Theorem using $^nC_r$ notation

$$(a+b)^n = \sum_{r=0}^{n} {^nC_r} a^{n-r} b^r$$

$$(1+\frac{x}{2}-\frac{2}{x})^4 = {^4C_0} (1+\frac{x}{2})^4 – {^4C_1} (1+\frac{x}{2})^3 \frac{2}{x} $$$$+ {^4C_2} (1+\frac{x}{2})^2 \left(\frac{2}{x}\right)^2 – {^4C_3} (1+\frac{x}{2}) \left(\frac{2}{x}\right)^3 + {^4C_4} \left(\frac{2}{x}\right)^4$$

Simplifying the coefficients:

$$(1+\frac{x}{2}-\frac{2}{x})^4 = (1+\frac{x}{2})^4 – \frac{8}{x} (1+\frac{x}{2})^3 $$ $$ + \frac{24}{x^2} (1+\frac{x}{2})^2 – 4 \left(\frac{8}{x^3} + \frac{4}{x^2}\right) + \frac{16}{x^4}$$

Step 3: Expand powers of $(1+\frac{x}{2})$

$$(1+\frac{x}{2})^2 = 1 + x + \frac{x^2}{4}$$

$$(1+\frac{x}{2})^3 = 1 + \frac{3x}{2} + \frac{3x^2}{4} + \frac{x^3}{8}$$

$$(1+\frac{x}{2})^4 = 1 + 2x + \frac{3x^2}{2} + \frac{x^3}{2} + \frac{x^4}{16}$$

Step 4: Substitute back into main expression

$$(1+\frac{x}{2}-\frac{2}{x})^4 = 1 + 2x + \frac{3x^2}{2} + \frac{x^3}{2} + \frac{x^4}{16}$$

$$- \frac{8}{x} \Big(1 + \frac{3x}{2} + \frac{3x^2}{4} + \frac{x^3}{8}\Big)$$

$$+ \frac{24}{x^2} \Big(1 + x + \frac{x^2}{4}\Big)$$

$$- 4 \Big(\frac{8}{x^3} + \frac{4}{x^2}\Big) + \frac{16}{x^4}$$

Step 5: Simplify terms

$$(1+\frac{x}{2}-\frac{2}{x})^4 = \frac{16}{x} + \frac{8}{x^2} – \frac{32}{x^3} + \frac{16}{x^4} – 4x + \frac{x^2}{2} + \frac{x^3}{2} + \frac{x^4}{16} – 5$$

โœ… Final Answer

$$\boxed{\frac{16}{x} + \frac{8}{x^2} – \frac{32}{x^3} + \frac{16}{x^4} – 4x + \frac{x^2}{2} + \frac{x^3}{2} + \frac{x^4}{16} – 5}$$


Question.6 : Find the expansion of $$(3x^2 – 2ax + 3a^2)^3$$ using the Binomial Theorem.

Solution:

Step 1: Grouping terms for binomial expansion

We can write:

$$(3x^2 – 2ax + 3a^2)^3 = \Big[3x^2 – (2ax – 3a^2)\Big]^3$$

Comparing with the standard binomial form $(a+b)^n$, we have:

$$\mathbf{a = 3x^2}, \quad \mathbf{b = – (2ax – 3a^2)}, \quad \mathbf{n = 3}$$

Step 2: Apply Binomial Theorem using $^nC_r$ notation

$$(a+b)^n = \sum_{r=0}^{n} {^nC_r} a^{n-r} b^r$$

So:

$$(3x^2 – (2ax – 3a^2))^3 = {^3C_0} (3x^2)^3 + {^3C_1} (3x^2)^2 \big(- (2ax – 3a^2)\big)$$ $$ + {^3C_2} (3x^2) \big(- (2ax – 3a^2)\big)^2 + {^3C_3} \big(- (2ax – 3a^2)\big)^3$$

Step 3: Simplify coefficients

$$(3x^2)^3 = 27x^6$$

$${^3C_1} (3x^2)^2 (- (2ax – 3a^2)) = 3 \cdot 9x^4 \cdot (-1)(2ax – 3a^2) = -54ax^5 + 81a^2x^4$$

$${^3C_2} (3x^2) \big(- (2ax – 3a^2)\big)^2 = 3 \cdot 3x^2 \cdot (2ax – 3a^2)^2 = 9x^2 (2ax – 3a^2)^2$$

$${^3C_3} \big(- (2ax – 3a^2)\big)^3 = – (2ax – 3a^2)^3$$

So the expression becomes:

$$27x^6 – 54ax^5 + 81a^2x^4 + 9x^2 (2ax – 3a^2)^2 – (2ax – 3a^2)^3$$

Step 4: Expand $(2ax – 3a^2)^2$ and $(2ax – 3a^2)^3$

$$(2ax – 3a^2)^2 = (2ax)^2 – 2(2ax)(3a^2) + (3a^2)^2 = 4a^2x^2 – 12a^3x + 9a^4$$

$$(2ax – 3a^2)^3 = (2ax)^3 – 3(2ax)^2(3a^2) + 3(2ax)(3a^2)^2 – (3a^2)^3$$

$$(2ax – 3a^2)^3 = 8a^3x^3 – 36a^4x^2 + 54a^5x – 27a^6$$

Step 5: Substitute back into main expression

$$(3x^2 – (2ax – 3a^2))^3 =27x^6 – 54ax^5 + 81a^2x^4 + 9x^2(4a^2x^2 – 12a^3x + 9a^4) $$ $$- (8a^3x^3 – 36a^4x^2 + 54a^5x – 27a^6)$$

Simplify each term:

$$(3x^2 – (2ax – 3a^2))^3 =27x^6 – 54ax^5 + 81a^2x^4 + (36a^2x^4 – 108a^3x^3 + 81a^4x^2) $$ $$ – 8a^3x^3 + 36a^4x^2 – 54a^5x + 27a^6$$

Combine like terms:

  • $x^6$: $27x^6$
  • $x^5$: $-54ax^5$
  • $x^4$: $81a^2x^4 + 36a^2x^4 = 117a^2x^4$
  • $x^3$: $-108a^3x^3 – 8a^3x^3 = -116a^3x^3$
  • $x^2$: $81a^4x^2 + 36a^4x^2 = 117a^4x^2$
  • $x^1$: $-54a^4x$
  • constants: $27a^6$

So the final expansion is:

$(3x^2 – (2ax – 3a^2))^3 = 27x^6 – 54ax^5 + 117a^2x^4 – 116a^3x^3 + 117a^4x^2 – 54a^5x + 27a^6$

Hence final result :

$$\boxed{27x^6 – 54ax^5 + 117a^2x^4 – 116a^3x^3 + 117a^4x^2 – 54a^5x + 27a^6}$$

โฌ…๏ธ NCERT Solutions Exercise 8.1 NCERT Solutions Exercise 7.1 โžก๏ธ

๐Ÿ“š Buy Study Material & Join Our Coaching

For premium study materials specially designed for JEE, NEET, NDA, CDS, AFCAT, SSC Exams, visit our official study material portal:
๐Ÿ‘‰ https://publishers.anandclasses.co.in/

For JEE/NEET Notes : Visit https://anandclasses.in/

For NDA Notes : Visit https://nda.anandclasses.in/

For SSC Notes : Visit https://ssc.anandclasses.in/

For CDS, AFCAT Notes : Visit https://cds-afcat.anandclasses.in/

To enroll in our offline or online coaching programs, visit our coaching center website:
๐Ÿ‘‰ https://anandclasses.co.in/

๐Ÿ“ž Call us directly at: +91-94631-38669

๐Ÿ’ฌ WhatsApp Us Instantly

Need quick assistance or want to inquire about classes and materials?

๐Ÿ“ฒ Click below to chat instantly on WhatsApp:
๐Ÿ‘‰ Chat on WhatsApp

๐ŸŽฅ Watch Video Lectures

Get access to high-quality video lessons, concept explainers, and revision tips by subscribing to our official YouTube channel:
๐Ÿ‘‰ Neeraj Anand Classes โ€“ YouTube Channel

RELATED TOPICS