NCERT Solutions Binomial Theorem Exercise 7.1 Class 11 Maths | Free PDF Download

⭐⭐⭐⭐⭐ (5/5 from 36721 reviews)

Question 1 : Expand: $(1 – 2x)^5$

Solution :

According to the binomial theorem:
$a = 1$, $b = 2x$, $n = 5$

Using the formula:
$$ (a – b)^n = \sum_{k=0}^{n} (-1)^k \;{}^nC_k \;a^{n-k} \;b^k $$

We get:
$ (1 – 2x)^5 = {}^5C_0(1)^5 – {}^5C_1(1)^4(2x) + {}^5C_2(1)^3(2x)^2 – {}^5C_3(1)^2(2x)^3 + {}^5C_4(1)(2x)^4 – {}^5C_5(2x)^5 $

Simplify each term:
$$(1 – 2x)^5 = 1 – 5(2x) + 10(4x^2) – 10(8x^3) + 5(16x^4) – 32x^5$$

$$(1 – 2x)^5 = 1 – 10x + 40x^2 – 80x^3 + 80x^4 – 32x^5$$


Question 2 : Expand: $\left(\dfrac{2}{x} – \dfrac{x}{2}\right)^5$

Solution :

$a = \dfrac{2}{x}$, $b = \dfrac{x}{2}$, $n = 5$

$ (\frac{2}{x} – \frac{x}{2})^5 = {}^5C_0(\frac{2}{x})^5 – {}^5C_1(\frac{2}{x})^4(\frac{x}{2}) + {}^5C_2(\frac{2}{x})^3(\frac{x}{2})^2 – {}^5C_3(\frac{2}{x})^2(\frac{x}{2})^3 + {}^5C_4(\frac{2}{x})(\frac{x}{2})^4 – {}^5C_5(\frac{x}{2})^5 $

Simplify each term:

$$ (\frac{2}{x} – \frac{x}{2})^5 = \frac{32}{x^5} – 5 \cdot \frac{16}{x^4} \cdot \frac{x}{2} + 10 \cdot \frac{8}{x^3} \cdot \frac{x^2}{4} – 10 \cdot \frac{4}{x^2} \cdot \frac{x^3}{8} + 5 \cdot \frac{2}{x} \cdot \frac{x^4}{16} – \frac{x^5}{32} $$

$$ (\frac{2}{x} – \frac{x}{2})^5 = \frac{32}{x^5} – \frac{40}{x^3} + \frac{20}{x} – 5x + \frac{5x^3}{8} – \frac{x^5}{32} $$


Question 3 : Expand: $ (2x – 3)^6 $

Solution :

$a = 2x$, $b = 3$, $n = 6$

$ (2x – 3)^6 = {}^6C_0 (2x)^6 – {}^6C_1 (2x)^5 (3) + {}^6C_2 (2x)^4 (3)^2 – {}^6C_3 (2x)^3 (3)^3 + {}^6C_4 (2x)^2 (3)^4 – {}^6C_5 (2x) (3)^5 + {}^6C_6 (3)^6 $

Simplify each term:

$(2x – 3)^6 = 64x^6 – 6 \cdot (32x^5 \cdot 3) + 15 \cdot (16x^4 \cdot 9) – 20 \cdot (8x^3 \cdot 27) + 15 \cdot (4x^2 \cdot 81) – 6 \cdot (2x \cdot 243) + 729 $

Final simplified form:

$(2x – 3)^6 =64x^6 – 576x^5 + 2160x^4 – 4320x^3 + 4860x^2 – 2916x + 729$


Question 4 : Expand: $\left(\dfrac{x}{3} + \dfrac{1}{x}\right)^5$

Solution :

$a = \dfrac{x}{3}$, $b = \dfrac{1}{x}$, $n = 5$

$ \left(\frac{x}{3} + \frac{1}{x}\right)^5 = {}^5C_0 \left(\frac{x}{3}\right)^5 + {}^5C_1 \left(\frac{x}{3}\right)^4 \left(\frac{1}{x}\right) + {}^5C_2 \left(\frac{x}{3}\right)^3 \left(\frac{1}{x}\right)^2 + {}^5C_3 \left(\frac{x}{3}\right)^2 \left(\frac{1}{x}\right)^3 + {}^5C_4 \left(\frac{x}{3}\right) \left(\frac{1}{x}\right)^4 + {}^5C_5 \left(\frac{1}{x}\right)^5 $

Simplify each term:

$ \left(\frac{x}{3} + \frac{1}{x}\right)^5 =\frac{x^5}{243} + 5 \cdot \frac{x^4}{81} \cdot \frac{1}{x} + 10 \cdot \frac{x^3}{27} \cdot \frac{1}{x^2} + 10 \cdot \frac{x^2}{9} \cdot \frac{1}{x^3} + 5 \cdot \frac{x}{3} \cdot \frac{1}{x^4} + \frac{1}{x^5} $

Final simplified form:

$$
\frac{x^5}{243} + \frac{5x^3}{81} + \frac{10x}{27} + \frac{10}{9x} + \frac{5}{3x^3} + \frac{1}{x^5}
$$


Question 5 : Expand: $\left(x + \frac{1}{x}\right)^6$

Solution :

$a = x$, $b = \frac{1}{x}$, $n = 6$

$ \left(x + \frac{1}{x}\right)^6 = {}^6C_0 x^6 + {}^6C_1 x^5 \left(\frac{1}{x}\right) + {}^6C_2 x^4 \left(\frac{1}{x}\right)^2 + {}^6C_3 x^3 \left(\frac{1}{x}\right)^3 + {}^6C_4 x^2 \left(\frac{1}{x}\right)^4 + {}^6C_5 x \left(\frac{1}{x}\right)^5 + {}^6C_6 \left(\frac{1}{x}\right)^6 $

Simplify each term:

$ \left(x + \frac{1}{x}\right)^6 = x^6 + 6 \cdot (x^5 \cdot \frac{1}{x}) + 15 \cdot (x^4 \cdot \frac{1}{x^2}) + 20 \cdot (x^3 \cdot \frac{1}{x^3}) + 15 \cdot (x^2 \cdot \frac{1}{x^4}) + 6 \cdot (x \cdot \frac{1}{x^5}) + \frac{1}{x^6} $

Final simplified form:

$$
x^6 + 6x^4 + 15x^2 + 20 + \frac{15}{x^2} + \frac{6}{x^4} + \frac{1}{x^6}
$$


Question 6 : Evaluate: $96^3$ using the binomial theorem

Solution :

Express $96$ as $(100 – 4)$:

$$
96^3 = (100 – 4)^3
$$

Using the binomial theorem:

$$
(100 – 4)^3 = {}^3C_0 (100)^3 – {}^3C_1 (100)^2 (4) + {}^3C_2 (100)(4)^2 – {}^3C_3 (4)^3
$$

Simplify each term:

$$
(100 – 4)^3 = 100^3 – 3 \cdot 100^2 \cdot 4 + 3 \cdot 100 \cdot 16 – 64
$$

$$
(100 – 4)^3 = 1000000 – 120000 + 4800 – 64
$$

$$
96^3= 884736
$$


Question 7 : Evaluate: $102^5$ using the binomial theorem

Solution :

Express $102$ as $(100 + 2)$:

$$
102^5 = (100 + 2)^5
$$

Using the binomial theorem:

$ (100 + 2)^5 = {}^5C_0 (100)^5 + {}^5C_1 (100)^4 (2) + {}^5C_2 (100)^3 (2)^2 + {}^5C_3 (100)^2 (2)^3 + {}^5C_4 (100)(2)^4 + {}^5C_5 (2)^5 $

Simplify each term:

$ (100 + 2)^5 = 100^5 + 5 \cdot 100^4 \cdot 2 + 10 \cdot 100^3 \cdot 4 + 10 \cdot 100^2 \cdot 8 + 5 \cdot 100 \cdot 16 + 32 $

$ (100 + 2)^5 = 10000000000 + 1000000000 + 40000000 + 80000 + 8000 + 32 $

$ 102^5 = 11040808032 $


Question 8 : Evaluate: $101^4$ using the binomial theorem

Solution :

Express $101$ as $(100 + 1)$:

$$
101^4 = (100 + 1)^4
$$

Using the binomial theorem:

$ (100 + 1)^4 = {}^4C_0 100^4 + {}^4C_1 100^3 (1) + {}^4C_2 100^2 (1)^2 + {}^4C_3 100 (1)^3 + {}^4C_4 (1)^4 $

Simplify each term:

$$
(100 + 1)^4 = 100^4 + 4 \cdot 100^3 + 6 \cdot 100^2 + 4 \cdot 100 + 1
$$

$$
(100 + 1)^4 = 100000000 + 400000 + 60000 + 400 + 1
$$

$$
101^4 = 1040604001
$$


Question 9 : Evaluate: $99^5$ using the binomial theorem

Solution :

Express $99$ as $(100 – 1)$:

$$
99^5 = (100 – 1)^5
$$

Using the binomial theorem:

$ (100 – 1)^5 = {}^5C_0 100^5 – {}^5C_1 100^4 (1) + {}^5C_2 100^3 (1)^2 – {}^5C_3 100^2 (1)^3 + {}^5C_4 100 (1)^4 – {}^5C_5 (1)^5 $

Simplify each term:

$$
(100 – 1)^5 = 100^5 – 5 \cdot 100^4 + 10 \cdot 100^3 – 10 \cdot 100^2 + 5 \cdot 100 – 1
$$

$$
(100 – 1)^5 = 1000000000 – 500000000 + 10000000 – 100000 + 500 – 1
$$

$$
99^5 = 950990499
$$


Question 10 : Using the binomial theorem, indicate which number is larger: $(1.1)^{10000}$ or $1000$

Solution :

Express $1.1$ as $(1 + 0.1)$:

$$(1.1)^{10000} = (1 + 0.1)^{10000}$$

Using the binomial theorem:

$ (1 + 0.1)^{10000} = {}^{10000}C_0 (1)^{10000} + {}^{10000}C_1 (1)^{9999} (0.1) + \text{other positive terms} $

Simplify the first few terms:

$$
(1 + 0.1)^{10000} = 1 + 1000 + \text{other positive terms}
$$

$$
(1 + 0.1)^{10000} = 1001 + \text{other positive terms} > 1000
$$

Hence,

$$(1.1)^{10000} > 1000$$


Question 11 : Find $ (a + b)^4 – (a – b)^4 $. Hence, evaluate $ (\sqrt{3} + \sqrt{2})^4 – (\sqrt{3} – \sqrt{2})^4 $.

Solution :

Using the binomial theorem:

$$(a + b)^4 = {}^4C_0 a^4 + {}^4C_1 a^3 b + {}^4C_2 a^2 b^2 + {}^4C_3 a b^3 + {}^4C_4 b^4$$

$$(a – b)^4 = {}^4C_0 a^4 – {}^4C_1 a^3 b + {}^4C_2 a^2 b^2 – {}^4C_3 a b^3 + {}^4C_4 b^4$$

Subtracting:

$ (a + b)^4 – (a – b)^4 = ({}^4C_0 a^4 + {}^4C_1 a^3 b + {}^4C_2 a^2 b^2 + {}^4C_3 a b^3 + {}^4C_4 b^4) – ({}^4C_0 a^4 – {}^4C_1 a^3 b + {}^4C_2 a^2 b^2 – {}^4C_3 a b^3 + {}^4C_4 b^4) $

$$
(a + b)^4 – (a – b)^4 = 2 ({}^4C_1 a^3 b + {}^4C_3 a b^3)
$$

Simplify the coefficients:

$$
(a + b)^4 – (a – b)^4 = 2 (4 a^3 b + 4 a b^3) = 8ab (a^2 + b^2)
$$

Substitute $a = \sqrt{3}$ and $b = \sqrt{2}$:

$$(\sqrt{3} + \sqrt{2})^4 – (\sqrt{3} – \sqrt{2})^4 = 8 (\sqrt{3})(\sqrt{2}) ((\sqrt{3})^2 + (\sqrt{2})^2)$$

$$
(\sqrt{3} + \sqrt{2})^4 – (\sqrt{3} – \sqrt{2})^4 = 8 \sqrt{6} (3 + 2)
$$

$$
(\sqrt{3} + \sqrt{2})^4 – (\sqrt{3} – \sqrt{2})^4 = 40 \sqrt{6}
$$


Question 12 : Find $(x + 1)^6 + (x – 1)^6$. Hence or otherwise evaluate $(\sqrt{2} + 1)^6 + (\sqrt{2} – 1)^6$.

Solution :

Using the binomial theorem:

$$(x + 1)^6 = {}^6C_0 x^6 + {}^6C_1 x^5 + {}^6C_2 x^4 + {}^6C_3 x^3 + {}^6C_4 x^2 + {}^6C_5 x + {}^6C_6$$

$$(x – 1)^6 = {}^6C_0 x^6 – {}^6C_1 x^5 + {}^6C_2 x^4 – {}^6C_3 x^3 + {}^6C_4 x^2 – {}^6C_5 x + {}^6C_6$$

Add the two expressions:

$ (x + 1)^6 + (x – 1)^6 = ({}^6C_0 x^6 + {}^6C_1 x^5 + {}^6C_2 x^4 + {}^6C_3 x^3 + {}^6C_4 x^2 + {}^6C_5 x + {}^6C_6) + ({}^6C_0 x^6 – {}^6C_1 x^5 + {}^6C_2 x^4 – {}^6C_3 x^3 + {}^6C_4 x^2 – {}^6C_5 x + {}^6C_6) $

$$
(x + 1)^6 + (x – 1)^6 = 2 ({}^6C_0 x^6 + {}^6C_2 x^4 + {}^6C_4 x^2 + {}^6C_6)
$$

Simplify the coefficients:

$$
(x + 1)^6 + (x – 1)^6 = 2 (x^6 + 15 x^4 + 15 x^2 + 1) \quad \text{-(1)}
$$

Now, let $x = \sqrt{2}$:

$$(\sqrt{2} + 1)^6 + (\sqrt{2} – 1)^6 = 2 \big((\sqrt{2})^6 + 15 (\sqrt{2})^4 + 15 (\sqrt{2})^2 + 1 \big)$$

$$
(\sqrt{2} + 1)^6 + (\sqrt{2} – 1)^6 = 2 (8 + 60 + 30 + 1)
$$

$$
(\sqrt{2} + 1)^6 + (\sqrt{2} – 1)^6 = 2 (99)
$$

$$
(\sqrt{2} + 1)^6 + (\sqrt{2} – 1)^6 = 198
$$


Question 13 : Show that $ 9^{n+1} – 8^n – 9 $ is divisible by $64$, whenever $n$ is a positive integer.

Solution :

To prove:

$$
9^{n+1} – 8^n – 9 = 64 k, \quad \text{where $k$ is some natural number}
$$

Express $9^{n+1}$ as $(1 + 8)^{n+1}$ and apply the binomial theorem:

$ (1 + 8)^{n+1} = {}^{n+1}C_0 \cdot 1^{n+1} + {}^{n+1}C_1 \cdot 1^n \cdot 8 + {}^{n+1}C_2 \cdot 1^{n-1} \cdot 8^2 + \dots + {}^{n+1}C_{n+1} \cdot 8^{n+1} $

Simplify the first few terms:

$ 9^{n+1} = 1 + (n+1) \cdot 8 + 8^2 \big[ {}^{n+1}C_2 + {}^{n+1}C_3 \cdot 8 + \dots + {}^{n+1}C_{n+1} \cdot 8^{n-1} \big] $

$$
9^{n+1} = 9 + 8 n + 64 \big[ {}^{n+1}C_2 + {}^{n+1}C_3 \cdot 8 + \dots + {}^{n+1}C_{n+1} \cdot 8^{n-1} \big]
$$

$$
9^{n+1} – 9 – 8 n = 64 \big[ {}^{n+1}C_2 + {}^{n+1}C_3 \cdot 8 + \dots + {}^{n+1}C_{n+1} \cdot 8^{n-1} \big]
$$

Hence:

$$
9^{n+1} – 8^n – 9 = 64 k
$$

Where $k$ is a natural number.

Therefore, $9^{n+1} – 8^n – 9$ is divisible by $64$ whenever $n$ is a positive integer.


Question 14 : Prove that $$ \sum_{r=0}^{n} 3^r {}^nC_r = 4^n $$

Solution :

The binomial theorem states:

$$
(a + b)^n = \sum_{k=0}^{n} {}^nC_k\; a^{,n-k} \;b^k
$$

Here, we take:

$$
a = 1, \quad b = 3
$$

Then:

$$
(1 + 3)^n = \sum_{r=0}^{n} {}^nC_r \; 1^{,n-r} \;3^r
$$

Since $1^{,n-r} = 1$, this simplifies to:

$$
(1 + 3)^n = \sum_{r=0}^{n} {}^nC_r \; 3^r
$$

$$
4^n = \sum_{r=0}^{n} {}^nC_r \; 3^r
$$

Term-by-Term Expansion

For small $n$, say $n = 4$, we can expand the sum:

$$
\sum_{r=0}^{4} {}^4C_r \; 3^r = {}^4C_0 3^0 + {}^4C_1 3^1 + {}^4C_2 3^2 + {}^4C_3 3^3 + {}^4C_4 3^4
$$

Compute each term:

  • ${}^4C_0 3^0 = 1 \cdot 1 = 1$
  • ${}^4C_1 3^1 = 4 \cdot 3 = 12$
  • ${}^4C_2 3^2 = 6 \cdot 9 = 54$
  • ${}^4C_3 3^3 = 4 \cdot 27 = 108$
  • ${}^4C_4 3^4 = 1 \cdot 81 = 81$

Add them together:

$$
1 + 12 + 54 + 108 + 81 = 256
$$

Also:

$$
(1 + 3)^4 = 4^4 = 256
$$

βœ… Matches perfectly!

General Conclusion

Hence, for any positive integer $n$:

$$
\sum_{r=0}^{n} 3^r \; {}^nC_r = 4^n
$$

This term-by-term expansion clearly shows how each term in the sum contributes to the final result.

NCERT Solutions Miscellaneous Exercise ➑️

πŸ“š Buy Study Material & Join Our Coaching

For premium study materials specially designed for JEE, NEET, NDA, CDS, AFCAT, SSC Exams, visit our official study material portal:
πŸ‘‰ https://publishers.anandclasses.co.in/

For JEE/NEET Notes : Visit https://anandclasses.in/

For NDA Notes : Visit https://nda.anandclasses.in/

For SSC Notes : Visit https://ssc.anandclasses.in/

For CDS, AFCAT Notes : Visit https://cds-afcat.anandclasses.in/

To enroll in our offline or online coaching programs, visit our coaching center website:
πŸ‘‰ https://anandclasses.co.in/

πŸ“ž Call us directly at: +91-94631-38669

πŸ’¬ WhatsApp Us Instantly

Need quick assistance or want to inquire about classes and materials?

πŸ“² Click below to chat instantly on WhatsApp:
πŸ‘‰ Chat on WhatsApp

πŸŽ₯ Watch Video Lectures

Get access to high-quality video lessons, concept explainers, and revision tips by subscribing to our official YouTube channel:
πŸ‘‰ Neeraj Anand Classes – YouTube Channel

RELATED TOPICS