Mean Value Theorem Formula Equation | Mean Value Theorem For Integrals, Class 12 Math Notes Study Material Download Free PDF

⭐⭐⭐✩ (3.7/5 from 406 reviews)

In mathematics, the mean value theorem states, roughly, that given a planar arc between two endpoints, there is at least one point at which the tangent to the arc is parallel to the secant through its endpoints.

The Mean Value Theorem states that if f(x) is continuous on [a, b] and differentiable on (a, b) then there exists a number c between a and b such that:

\[\large {f}'(c)=\frac{f(b)-f(a)}{b-a}\]

Solved Example

Question: Evaluate f(x) = x+ 2 in the interval [1, 2] using mean value theorem.

Solution:

Given function is:
f(x) = x+ 2

Interval is [1, 2].

i.e. a = 1, b = 2

Mean value theorem is given by,

f'(c) =

\(\begin{array}{l}\frac{f(b)-f(a)}{b-a}\end{array} \)

f(b) = f(2) = 22 + 2 = 6

f(a) = f(1) = 12 + 2 = 3

So, f'(c) =

\(\begin{array}{l}\frac{6-3}{2-1}\end{array} \)

= 3

⬅️ Increasing & Decreasing Functions Monotonicity with Examples for Functions, Class 12 Math Notes Study Material Download Free PDF Second Order Derivative | Explanation with Examples, Class 12 Math Notes Study Material Download Free PDF ➑️

πŸ“š Buy Study Material & Join Our Coaching

For premium study materials specially designed for NDA Exam, visit our official study material portal:
πŸ‘‰ https://publishers.anandclasses.co.in/

For JEE/NEET Notes : Visit https://anandclasses.in/

To enroll in our offline or online coaching programs, visit our coaching center website:
πŸ‘‰ https://anandclasses.co.in/

πŸ“ž Call us directly at: +91-94631-38669

πŸ’¬ WhatsApp Us Instantly

Need quick assistance or want to inquire about classes and materials?

πŸ“² Click below to chat instantly on WhatsApp:
πŸ‘‰ Chat on WhatsApp

πŸŽ₯ Watch Video Lectures

Get access to high-quality video lessons, concept explainers, and revision tips by subscribing to our official YouTube channel:
πŸ‘‰ Neeraj Anand Classes – YouTube Channel

RELATED TOPICS