Limits And Derivatives NCERT Solutions Miscellaneous Exercise Class 11 (Set-1)

⭐⭐⭐⭐⭐ (5/5 from 59621 reviews)

Question 1(i) : Find the derivative of $-x$ from first principle.

Solution :
Let $f(x)=-x$.
Then $f(x+h)=-(x+h)$.

From first principle,
$$ f'(x)=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}$$

$$ f'(x) =\lim_{h\to 0}\frac{-(x+h)-(-x)}{h}$$

$$ f'(x) =\lim_{h\to 0}\frac{-x-h+x}{h}$$

$$ f'(x) =\lim_{h\to 0}\frac{-h}{h}.$$

Hence
$$
f'(x)=\lim_{h\to 0}-1=-1.
$$

$$\boxed{f'(x)=-1,}$$


Question 1(ii) : Find the derivative of $(-x)^{-1}$ from first principle.

Solution :
Let $f(x)=(-x)^{-1}=\dfrac{1}{-x}=-\dfrac{1}{x}$.
Then
$$f(x+h)=-\frac{1}{x+h}.$$

From first principle,
$$ f'(x)=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}$$

$$ f'(x) =\lim_{h\to 0}\frac{-\dfrac{1}{x+h}-\big(-\dfrac{1}{x}\big)}{h}$$

$$ f'(x) =\lim_{h\to 0}\frac{-\dfrac{1}{x+h}+\dfrac{1}{x}}{h}$$

Combine the numerator:
$$
-\frac{1}{x+h}+\frac{1}{x}
=\frac{-x + (x+h)}{x(x+h)}
=\frac{h}{x(x+h)}.
$$

Thus
$$
f'(x)=\lim_{h\to 0}\frac{\dfrac{h}{x(x+h)}}{h}
=\lim_{h\to 0}\frac{1}{x(x+h)}
=\frac{1}{x^2}.
$$

$$\boxed{f'(x)=\frac{1}{x^2}}$$

Download concise derivative practice notes by Anand Classes β€” perfect for JEE & CBSE calculus revision.


Question 1(iii) : Find the derivative of $\sin(x+1)$ from first principle.

Solution:
Let
$$f(x)=\sin(x+1)$$

Then
$$f(x+h)=\sin((x+h)+1)=\sin(x+h+1)$$

From first principle,
$$
f'(x)=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}
=\lim_{h\to 0}\frac{\sin(x+h+1)-\sin(x+1)}{h}
$$

Using identity:
$$\sin A-\sin B=2\cos\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right)$$

Here,
$A=x+h+1$ and $B=x+1$

So,
$$
f'(x)=\lim_{h\to 0}
\frac{2\cos\left(\dfrac{(x+h+1)+(x+1)}{2}\right)\sin\left(\dfrac{(x+h+1)-(x+1)}{2}\right)}{h}
$$

Simplify inside:
$$
f'(x)=\lim_{h\to 0}
\frac{2\cos\left(\dfrac{2x+h+2}{2}\right)\sin\left(\dfrac{h}{2}\right)}{h}
$$

$$
=\lim_{h\to 0}
2\cos(x+1+\tfrac{h}{2})\cdot \frac{\sin(h/2)}{h}
$$

Multiply and divide by 2:
$$
f'(x)=\lim_{h\to 0}
2\cos(x+1+\tfrac{h}{2})\cdot
\frac{\sin(h/2)}{(h/2)}\cdot \frac{1}{2}
$$

Now apply limits:

$\lim\limits_{h\to 0}\cos(x+1+\frac{h}{2})=\cos(x+1)$

$\lim\limits_{h\to 0}\dfrac{\sin(h/2)}{(h/2)}=1$

Thus,
$$
f'(x)=\cos(x+1)
$$

βœ… Final Answer:
$$\boxed{f'(x)=\cos(x+1)}$$

High-quality derivative notes and step-by-step practice available from Anand Classes β€” perfect for CBSE & JEE exams.


Question 1(iv) : Find the derivative of $\cos\left(x – \frac{\pi}{8}\right)$ from first principle.

Solution:
Let
$$f(x)=\cos\left(x-\frac{\pi}{8}\right)$$
Then
$$f(x+h)=\cos\left((x+h)-\frac{\pi}{8}\right)$$

Using first principle:
$$
f'(x)=\lim_{h\to0}\frac{f(x+h)-f(x)}{h}
=\lim_{h\to0}\frac{\cos\left(x+h-\frac{\pi}{8}\right)-\cos\left(x-\frac{\pi}{8}\right)}{h}
$$

Use identity:
$$\cos A-\cos B=-2\sin\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right)$$

Here,
$A=x+h-\frac{\pi}{8}$ and $B=x-\frac{\pi}{8}$

So,
$$
f'(x)=\lim_{h\to0}
\frac{-2\sin\left(\frac{2x+h-\frac{\pi}{4}}{2}\right)\sin\left(\frac{h}{2}\right)}{h}
$$

Simplify:
$$
f'(x)=\lim_{h\to0}
-2\sin\left(x-\frac{\pi}{8}+\frac{h}{2}\right)\cdot\frac{\sin(h/2)}{h}
$$

Multiply and divide by 2:
$$
f'(x)=\lim_{h\to0}
-2\sin\left(x-\frac{\pi}{8}+\frac{h}{2}\right)\cdot
\frac{\sin(h/2)}{(h/2)}\cdot \frac{1}{2}
$$

Apply limits:

$\lim_{h\to0}\sin\left(x-\frac{\pi}{8}+\frac{h}{2}\right)=\sin\left(x-\frac{\pi}{8}\right)$

$\lim_{h\to0}\dfrac{\sin(h/2)}{(h/2)}=1$

Thus,
$$
f'(x)=-\sin\left(x-\frac{\pi}{8}\right)
$$

βœ… Final Answer:
$$\boxed{f'(x)=-\sin\left(x-\frac{\pi}{8}\right)}$$



NCERT Question 2: Find the derivative of $(x+a)$

Solution:
Let
$$f(x)=x+a$$

Taking derivative of both sides:
$$\frac{d}{dx}(f(x))=\frac{d}{dx}(x+a)$$

We know:

  • Derivative of $x$ is $1$
  • Derivative of a constant $a$ is $0$

Thus,
$$f'(x)=1+0=1$$

βœ… Final Answer:
$$\boxed{f'(x)=1}$$

🎯 Get more derivatives rules and first-principle solutions from Anand Classes β€” ideal for CBSE + JEE Calculus preparation!


NCERT Question 3: Find the derivative of $$(px+q)\left(\frac{r}{x}+s\right)$$

Solution:
Let
$$f(x)=(px+q)\left(\frac{r}{x}+s\right)$$

Use the product rule:
If $f(x)=u \cdot v$ then
$$f'(x)=u’v + uv’$$

Here,
$$u = px+q \quad \Rightarrow \quad u’ = p$$
$$v = \frac{r}{x}+s = r x^{-1} + s \quad \Rightarrow \quad v’ = -r x^{-2} + 0 = -\frac{r}{x^2}$$

Now apply the product rule:

$$f'(x)=p\left(\frac{r}{x}+s\right)+(px+q)\left(-\frac{r}{x^2}\right)$$

So the final answer is:

$$\boxed{f'(x)=p\left(\frac{r}{x}+s\right)-\frac{r(px+q)}{x^2}}$$

πŸ“š For more Class 11 & 12 Calculus solutions and derivatives practice, follow Anand Classes β€” scoring success for CBSE + JEE!


NCERT Question 4: Find the derivative of $(ax+b)(cx+d)^2$

Solution :
Let
$$f(x) = (ax+b)(cx+d)^2$$

Taking derivative of both sides:

$$\frac{d}{dx}[f(x)] = \frac{d}{dx}[(ax+b)(cx+d)^2]$$

Using the product rule $(uv)’ = uv’ + u’v$:

Let
$$u = ax+b \quad \Rightarrow \quad u’ = a$$
$$v = (cx+d)^2 \quad \Rightarrow \quad v’ = 2(cx+d) \cdot c = 2c(cx+d)$$
(using chain rule)

Therefore,

$$f'(x) = (ax+b)\cdot 2c(cx+d) + (cx+d)^2 \cdot a$$

So the final derivative is:

$$\boxed{f'(x) = 2c(ax+b)(cx+d) + a(cx+d)^2}$$

You may also factor if required:

$$\boxed{f'(x) = (cx+d)\left[2c(ax+b) + a(cx+d)\right]}$$

✨ Get more detailed calculus notes & derivative rules from Anand Classes β€” perfect for Class 11, Class 12, and JEE preparation!


NCERT Question 5: Find the derivative of $\dfrac{ax+b}{cx+d}$

Solution :
Let
$$f(x) = \frac{ax+b}{cx+d}$$

Taking derivative of both sides:

$$\frac{d}{dx}[f(x)] = \frac{d}{dx}\left(\frac{ax+b}{cx+d}\right)$$

Using the quotient rule:
$$(\frac{u}{v})’ = \frac{uv’ – u’v}{v^2}$$

Here,
$$u = ax+b \quad \Rightarrow \quad u’ = a$$

$$v = cx+d \quad \Rightarrow \quad v’ = c$$

Apply the rule:

$$f'(x) = \frac{(ax+b)'(cx+d) – (ax+b)(cx+d)’}{(cx+d)^2}$$

$$f'(x) = \frac{a(cx+d) – (ax+b)c}{(cx+d)^2}$$

Expand the numerator:

$$f'(x) = \frac{acx + ad – acx – bc}{(cx+d)^2}$$

Simplify:

$$\boxed{f'(x) = \frac{ad – bc}{(cx+d)^2}}$$

πŸ“˜ More derivatives and calculus notes available from Anand Classes β€” ideal for Class 11, 12, and JEE students!


NCERT Question 6 : Find the derivative of $$f(x) = \dfrac{1 + \dfrac{1}{x}}{1 – \dfrac{1}{x}}$$

Solution :
Given:
$$f(x) = \dfrac{1 + \dfrac{1}{x}}{1 – \dfrac{1}{x}}$$

Rewrite by taking LCM in numerator and denominator:

$$f(x) = \dfrac{\dfrac{x+1}{x}}{\dfrac{x-1}{x}}$$

Cancel common denominator $x$:

$$f(x) = \dfrac{x+1}{x-1}$$

Now differentiate using quotient rule:

Let,
$$u = x + 1 \Rightarrow u’ = 1$$

$$v = x – 1 \Rightarrow v’ = 1$$

Quotient rule:
$$(\dfrac{u}{v})’ = \dfrac{vu’ – uv’}{v^2}$$

Apply:

$$f'(x) = \dfrac{(x-1)(1) – (x+1)(1)}{(x-1)^2}$$

Simplify numerator:

$$f'(x) = \frac{x-1 – x – 1}{(x-1)^2}$$

$$f'(x) = \frac{-2}{(x-1)^2}$$

βœ… Final Answer

$$\boxed{f'(x) = \frac{-2}{(x-1)^2}}$$

πŸ“˜ Continue learning with Anand Classes β€” trusted study material for CBSE & JEE Mathematics!


NCERT Question 7 : Find the derivative of:
$$f(x) = \frac{1}{ax^2 + bx + c}$$

Solution :
Given:
$$f(x) = \frac{1}{ax^2 + bx + c}$$

Rewrite in power form:

$$f(x) = (ax^2 + bx + c)^{-1}$$

Differentiate using chain rule:

Let
$$u = ax^2 + bx + c \quad \Rightarrow \quad u’ = 2ax + b$$

So,

$$f'(x) = -1 \cdot (ax^2 + bx + c)^{-2} \cdot (2ax + b)$$

Thus,

$$f'(x) = -\frac{2ax + b}{(ax^2 + bx + c)^2}$$

βœ… Final Answer

$$\boxed{f'(x) = -\frac{2ax + b}{(ax^2 + bx + c)^2}}$$

For more derivative solutions and mathematics notes β€” Download study material by Anand Classes, ideal for CBSE & JEE students!


NCERT Question 8 : Find the derivative of
$$f(x) = \frac{ax + b}{px^2 + qx + r}$$

Solution :
Given,
$$f(x) = \frac{ax + b}{px^2 + qx + r}$$

Using the quotient rule:
$$\left(\frac{u}{v}\right)’ = \frac{u’v – uv’}{v^2}$$

Let
$u = ax + b \Rightarrow u’ = a$
$v = px^2 + qx + r \Rightarrow v’ = 2px + q$

So,
$$f'(x) = \frac{a(px^2 + qx + r) – (ax + b)(2px + q)}{(px^2 + qx + r)^2}$$

Expanding the numerator:

$$
a(px^2 + qx + r) = apx^2 + aqx + ar
$$

$$
(ax + b)(2px + q) = 2apx^2 + aqx + 2bpx + bq
$$

Subtract:

$$
apx^2 + aqx + ar – (2apx^2 + aqx + 2bpx + bq)
$$

Simplifying:

$$
= -apx^2 – 2bpx + ar – bq
$$

βœ… Final Answer

$$\boxed{f'(x) = \frac{-apx^2 – 2bpx + ar – bq}{(px^2 + qx + r)^2}}$$


NCERT Question 9 : Find the derivative of
$$f(x) = \frac{px^2 + qx + r}{ax + b}$$

Solution :
Given,
$$f(x) = \frac{px^2 + qx + r}{ax + b}$$

Using the quotient rule:
$$\left(\frac{u}{v}\right)’ = \frac{u’v – uv’}{v^2}$$

Let
$$
u = px^2 + qx + r \quad \Rightarrow \quad u’ = 2px + q
$$

$$
v = ax + b \quad \Rightarrow \quad v’ = a
$$

$$
f'(x) = \frac{(2px + q)(ax + b) – (px^2 + qx + r)(a)}{(ax + b)^2}
$$

Expand the numerator:

$$
(2px + q)(ax + b) = 2apx^2 + aqx + 2bpx + bq
$$

$$
a(px^2 + qx + r) = apx^2 + aqx + ar
$$

Subtract:

$$
2apx^2 + aqx + 2bpx + bq – (apx^2 + aqx + ar)
$$

Simplify:

$$
= apx^2 + 2bpx + bq – ar
$$

βœ… Final Answer

$$
\boxed{f'(x) = \frac{apx^2 + 2bpx + bq – ar}{(ax + b)^2}}
$$


NCERT Question 10 Find the derivative of
$$f(x) = \frac{a}{x^4} – \frac{b}{x^2} + \cos x$$

Solution :
Given,
$$f(x) = \frac{a}{x^4} – \frac{b}{x^2} + \cos x$$

Rewrite using negative exponents:

$$f(x) = a x^{-4} – b x^{-2} + \cos x$$

Differentiate both sides:

$$f'(x) = \frac{d}{dx}(a x^{-4}) – \frac{d}{dx}(b x^{-2}) + \frac{d}{dx}(\cos x)$$

Using $\frac{d}{dx}(x^n) = n x^{n-1}$ and $\frac{d}{dx}(\cos x) = -\sin x$:

$$f'(x) = a(-4x^{-5}) – b(-2x^{-3}) – \sin x$$

Simplify:

$$f'(x) = -4ax^{-5} + 2bx^{-3} – \sin x$$

Write back in fractional form:

$$f'(x) = -\frac{4a}{x^5} + \frac{2b}{x^3} – \sin x$$

Final Answer

$$\boxed{f'(x) = -\frac{4a}{x^5} + \frac{2b}{x^3} – \sin x}$$

NCERT Solutions Exercise 12.2 (Set-3) ➑️

πŸ“š Buy Study Material & Join Our Coaching

For premium study materials specially designed for JEE, NEET, NDA, CDS, AFCAT, SSC Exams, visit our official study material portal:
πŸ‘‰ https://publishers.anandclasses.co.in/

For JEE/NEET Notes : Visit https://anandclasses.in/

For NDA Notes : Visit https://nda.anandclasses.in/

For SSC Notes : Visit https://ssc.anandclasses.in/

For CDS, AFCAT Notes : Visit https://cds-afcat.anandclasses.in/

To enroll in our offline or online coaching programs, visit our coaching center website:
πŸ‘‰ https://anandclasses.co.in/

πŸ“ž Call us directly at: +91-94631-38669

πŸ’¬ WhatsApp Us Instantly

Need quick assistance or want to inquire about classes and materials?

πŸ“² Click below to chat instantly on WhatsApp:
πŸ‘‰ Chat on WhatsApp

πŸŽ₯ Watch Video Lectures

Get access to high-quality video lessons, concept explainers, and revision tips by subscribing to our official YouTube channel:
πŸ‘‰ Neeraj Anand Classes – YouTube Channel

RELATED TOPICS