Integrals NCERT Solutions Exercise 7.8 Chapter-7 Class 12 Math Study Material Free Download (Set-2)

โญโญโญโญโญ (5/5 from 78345 reviews)

NCERT Question 12: Evaluate the integral
$$\int_{0}^{\dfrac{\pi}{2}}\cos^{2}x\;dx$$

Solution
Use the double-angle identity:
$$\cos^{2}x=\frac{1+\cos 2x}{2}$$

So the integral becomes
$$\int_{0}^{\dfrac{\pi}{2}}\cos^{2}x\;dx
=\frac{1}{2}\int_{0}^{\dfrac{\pi}{2}}\bigl(1+\cos 2x\bigr)\;dx$$

Find the antiderivative:
$$\int\bigl(1+\cos 2x\bigr)\;dx
=x+\frac{1}{2}\sin 2x + C$$

Apply the limits $0$ to $\frac{\pi}{2}$:
$$\frac{1}{2}\left[\;x+\frac{1}{2}\sin 2x\;\right]_{0}^{\dfrac{\pi}{2}}
=\frac{1}{2}\left(\frac{\pi}{2}+0-0-0\right)=\displaystyle \frac{\pi}{4}$$

Therefore the value is
$$\boxed{\displaystyle \frac{\pi}{4}}$$

Sharpen your calculus skills with clear, exam-ready notes from Anand Classes โ€” download structured solution sheets and practice sets ideal for NCERT, CBSE and JEE revision.


NCERT Question 13: Evaluate the integral
$$\int_{2}^{3}\frac{x}{x^{2}+1}\;dx$$

Solution
Let
$$I=\int_{2}^{3}\frac{x}{x^{2}+1}\;dx$$

Rewrite the integrand:
$$\frac{x}{x^{2}+1}
=\frac{1}{2}\cdot\frac{2x}{x^{2}+1}$$

So,
$$I=\frac{1}{2}\int_{2}^{3}\frac{2x}{x^{2}+1}\;dx$$

Now integrate:
$$\int\frac{2x}{x^{2}+1}\;dx=\log(x^{2}+1)+C$$

Thus,
$$I=\frac{1}{2}\Bigl[\;\log(x^{2}+1)\;\Bigr]_{2}^{3}$$

Apply limits:
$$I=\frac{1}{2}\left[\log(3^{2}+1)-\log(2^{2}+1)\right]$$

$$I=\frac{1}{2}\left[\log(10)-\log(5)\right]$$

$$I=\frac{1}{2}\log\left(\frac{10}{5}\right)$$

$$I=\frac{1}{2}\log 2$$

So the value of the integral is
$$\boxed{\displaystyle \frac{1}{2}\log 2}$$

Enhance your preparation with detailed NCERT and JEE-focused solutions from Anand Classes โ€” a perfect resource for CBSE boards, competitive exams, and concept strengthening.


NCERT Question 14: Evaluate the integral
$$\displaystyle \int_{0}^{1}\frac{2x+3}{5x^{2}+1}\;dx$$

Solution

$$\displaystyle \int_{0}^{1}\frac{2x+3}{5x^{2}+1}\;dx$$

Split the integrand:
$$\frac{2x+3}{5x^{2}+1}=\frac{2x}{5x^{2}+1}+\frac{3}{5x^{2}+1}.$$

For the first part use $u=5x^{2}+1,$ so $du=10x\;dx$ and $2x\;dx=\dfrac{1}{5}du$. Thus
$$\int\frac{2x}{5x^{2}+1}\;dx=\frac{1}{5}\int\frac{du}{u}=\frac{1}{5}\ln(5x^{2}+1).$$

For the second part use the standard formula $\displaystyle\int\frac{dx}{a x^{2}+1}=\frac{1}{\sqrt{a}}\tan^{-1}(x\sqrt{a})$. With $a=5$,
$$\int\frac{3}{5x^{2}+1}\;dx=\frac{3}{\sqrt{5}}\tan^{-1}(x\sqrt{5}).$$

Hence an antiderivative is
$$F(x)=\frac{1}{5}\ln(5x^{2}+1)+\frac{3}{\sqrt{5}}\tan^{-1}(x\sqrt{5}).$$

Evaluate from $0$ to $1$:
$$
\int_{0}^{1}\frac{2x+3}{5x^{2}+1}\;dx =F(1)-F(0) $$

$$\int_{0}^{1}\frac{2x+3}{5x^{2}+1}\;dx=\frac{1}{5}\ln(6)+\frac{3}{\sqrt{5}}\tan^{-1}(\sqrt{5})- \bigl(0+0\bigr)$$

$$\int_{0}^{1}\frac{2x+3}{5x^{2}+1}\;dx=\frac{1}{5}\ln 6+\frac{3}{\sqrt{5}}\tan^{-1}\bigl(\sqrt{5}\bigr).
$$

Final Answer
$$\boxed{\displaystyle \int_{0}^{1}\frac{2x+3}{5x^{2}+1}\;dx=\frac{1}{5}\ln 6+\frac{3}{\sqrt{5}}\tan^{-1}\bigl(\sqrt{5}\bigr)}$$

Boost your revision with downloadable, neatly formatted solution sets from Anand Classes โ€” perfect for quick NCERT review and strong CBSE/JEE preparation.


NCERT Question 15: Evaluate the integral
$$\int_{0}^{1} x e^{x^{2}}\;dx$$

Solution

Let
$$I=\int_{0}^{1} x e^{x^{2}}\;dx$$

Substitute $t=x^{2}$ so that $dt=2x\;dx$ and $x\;dx=\tfrac{1}{2}dt$. When $x=0\Rightarrow t=0$ and $x=1\Rightarrow t=1$. Thus
$$I=\frac{1}{2}\int_{0}^{1} e^{t}\;dt.$$

Integrate:
$$I=\frac{1}{2}\bigl[e^{t}\bigr]_{0}^{1}=\frac{1}{2}\bigl(e-1\bigr).$$

Final Answer
$$\boxed{\displaystyle \int_{0}^{1} x e^{x^{2}}\;dx=\frac{1}{2}\bigl(e-1\bigr)}$$

Download concise carefully worked notes by Anand Classes โ€” perfect for JEE and CBSE preparation and ideal as quick revision material for integration and partial fractions.


NCERT Question 16: Evaluate the integral
$$I=\int_{1}^{2}\frac{5x^{2}}{x^{2}+4x+3}dx$$

Solution

$$I=\int_{1}^{2}\frac{5x^{2}}{x^{2}+4x+3}dx$$

First perform polynomial division, rewrite the integrand:

$$\frac{5x^{2}}{x^{2}+4x+3}=5-\frac{20x+15}{x^{2}+4x+3}$$

factor the denominator:

$$x^{2}+4x+3=(x+1)(x+3)$$

do partial fractions for the remainder:

$$\frac{20x+15}{(x+1)(x+3)}=\frac{A}{x+1}+\frac{B}{x+3}$$

Equating coefficients gives

$$A+B=20,\qquad 3A+B=15$$

so

$$2A=-5\implies A=-\frac{5}{2},\qquad B=20-A=\frac{45}{2}$$

Thus the integrand becomes

$$\frac{5x^{2}}{x^{2}+4x+3}=5+\frac{5/2}{x+1}-\frac{45/2}{x+3}$$

Integrate termwise:

$$I=\int_{1}^{2}\left(5+\frac{5/2}{x+1}-\frac{45/2}{x+3}\right)dx$$

$$I=\left[5x+\frac{5}{2}\ln|x+1|-\frac{45}{2}\ln|x+3|\right]_{1}^{2}$$

Evaluate at the limits:

At $x=2$:
$$5x+\frac{5}{2}\ln(x+1)-\frac{45}{2}\ln(x+3)=10+\frac{5}{2}\ln 3-\frac{45}{2}\ln 5$$

At $x=1$:
$$5x+\frac{5}{2}\ln(x+1)-\frac{45}{2}\ln(x+3)=5+\frac{5}{2}\ln 2-\frac{45}{2}\ln 4$$

Subtract:

$$I=\left[5x+\frac{5}{2}\ln|x+1|-\frac{45}{2}\ln|x+3|\right]_{1}^{2}=5+\frac{5}{2}\ln\frac{3}{2}-\frac{45}{2}\ln\frac{5}{4}$$

Factor $\tfrac{5}{2}$ if desired:

$$I=5+\frac{5}{2}\left(\ln\frac{3}{2}-9\ln\frac{5}{4}\right)$$

Final answer

$$\boxed{I=5+\frac{5}{2}\ln\frac{3}{2}-\frac{45}{2}\ln\frac{5}{4},}$$


NCERT Question.17 : Evaluate the integral
$$I=\int_{0}^{\dfrac{\pi}{4}}\left(2\sec^{2}x+x^{3}+2\right)dx$$

Solution

$$I=\int_{0}^{\dfrac{\pi}{4}}\left(2\sec^{2}x+x^{3}+2\right)dx$$

Find an antiderivative termwise. An antiderivative of the integrand is

$$F(x)=2\tan x+\frac{x^{4}}{4}+2x$$

so by the Fundamental Theorem of Calculus

$$I=F\left(\frac{\pi}{4}\right)-F(0)$$

Evaluate at the limits:

$$F\left(\frac{\pi}{4}\right)=2\tan\frac{\pi}{4}+\frac{\left(\frac{\pi}{4}\right)^{4}}{4}+2\cdot\frac{\pi}{4}
=2+\frac{\pi}{2}+\frac{\pi^{4}}{1024}$$

$$F(0)=2\tan 0+0+0=0$$

Therefore

$$I=2+\frac{\pi}{2}+\frac{\pi^{4}}{1024}$$

Final answer

$$\boxed{I=2+\frac{\pi}{2}+\frac{\pi^{4}}{1024},}$$

Download notes by Anand Classes โ€” concise solutions perfect for JEE and CBSE preparation and ideal for quick revision and practice.


NCERT Question 18: Evaluate the integral
$$I=\int_{0}^{\pi}\left(\sin^{2}\frac{x}{2}-\cos^{2}\frac{x}{2}\right)dx$$

Solution

$$I=\int_{0}^{\pi}\left(\sin^{2}\frac{x}{2}-\cos^{2}\frac{x}{2}\right)dx$$

Use the identity
$$\sin^{2}\theta-\cos^{2}\theta=-\cos2\theta$$
with $\theta=\dfrac{x}{2}$, giving

$$\sin^{2}\frac{x}{2}-\cos^{2}\frac{x}{2}=-\cos x$$

Thus,

$$I=\int_{0}^{\pi}\left(\sin^{2}\frac{x}{2}-\cos^{2}\frac{x}{2}\right)dx
=-\int_{0}^{\pi}\cos x\;dx$$

An antiderivative of $\cos x$ is $\sin x$, so

$$I=-[\sin x]_{0}^{\pi}$$

Evaluate the limits:

$$I=-(\sin\pi-\sin0)=-(0-0)=0$$

Final answer

$$\boxed{I=0}$$

High-quality step-by-step solutions by Anand Classes โ€” ideal for CBSE and JEE preparation, and perfect for strengthening your calculus fundamentals.


NCERT Question 19: Evaluate the integral
$$I=\int_{0}^{2}\frac{6x+3}{x^{2}+4}dx$$

Solution
Let $$I=\int_{0}^{2}\frac{6x+3}{x^{2}+4}dx$$

Write the integrand as a constant factor times a sum:

$$\frac{6x+3}{x^{2}+4}=3\cdot\frac{2x+1}{x^{2}+4} =3\left(\frac{2x}{x^{2}+4}+\frac{1}{x^{2}+4}\right)$$

Integrate termwise. An antiderivative is

$$F(x)=3\left(\ln\big(x^{2}+4\big)+\frac{1}{2}\tan^{-1}\frac{x}{2}\right)$$

so by the Fundamental Theorem of Calculus

$$I=F(2)-F(0)$$

Evaluate the limits:

$$F(2)=3\left(\ln(8)+\frac{1}{2}\tan^{-1}1\right)=3\ln 8+\frac{3}{2}\cdot\frac{\pi}{4}=3\ln 8+\frac{3\pi}{8}$$

$$F(0)=3\left(\ln 4+\frac{1}{2}\tan^{-1}0\right)=3\ln 4+0=3\ln 4$$

Therefore

$$I=3\ln 8-3\ln 4+\frac{3\pi}{8}=3\ln\frac{8}{4}+\frac{3\pi}{8}=3\ln 2+\frac{3\pi}{8}$$

Final answer

$$\boxed{I=3\ln 2+\frac{3\pi}{8}}$$

Concise, exam-focused notes by Anand Classes โ€” clear worked solutions ideal for JEE and CBSE revision and quick practice.


NCERT Question 20: Evaluate the integral
$$I=\int_{0}^{1}\left(xe^{x}+\sin\left(\frac{\pi x}{4}\right)\right)dx$$

Solution

$$I=\int_{0}^{1}\left(xe^{x}+\sin\left(\frac{\pi x}{4}\right)\right)dx$$

Split the integral:

$$I=\int_{0}^{1}xe^{x}dx+\int_{0}^{1}\sin\left(\frac{\pi x}{4}\right)dx$$

First integral:
$$\int xe^{x}dx=xe^{x}-e^{x}=e^{x}(x-1)$$

Evaluate from (0) to (1):

$$\left[e^{x}(x-1)\right]_{0}^{1}=e(1-1)-1(0-1)=1$$

Second integral:
Let
$$\int\sin\left(\frac{\pi x}{4}\right)dx$$

The antiderivative is

$$-\frac{4}{\pi}\cos\left(\frac{\pi x}{4}\right)$$

Evaluate from (0) to (1):

$$\left[-\frac{4}{\pi}\cos\left(\frac{\pi x}{4}\right)\right]_{0}^{1}
=-\frac{4}{\pi}\cos\left(\frac{\pi}{4}\right)+\frac{4}{\pi}\cos 0$$

$$=-\frac{4}{\pi}\left(\frac{\sqrt{2}}{2}\right)+\frac{4}{\pi}
=\frac{4}{\pi}\left(1-\frac{\sqrt{2}}{2}\right)$$

Add both parts:

$$I=1+\frac{4}{\pi}\left(1-\frac{\sqrt{2}}{2}\right)$$

Final answer

$$\boxed{I=1+\frac{4}{\pi}\left(1-\frac{\sqrt{2}}{2}\right)}$$

Get high-quality integral solutions and study material from Anand Classes โ€” perfect for JEE and CBSE students who want clear, step-by-step explanations for fast revision.


NCERT Question 21: Evaluate the integral
$$\int_{1}^{\sqrt{3}}\frac{dx}{1+x^{2}}$$

Solution

$$\int_{1}^{\sqrt{3}}\frac{dx}{1+x^{2}}$$

Use the standard formula
$$\int \frac{dx}{1+x^{2}}=\tan^{-1}x$$

Evaluate the definite integral:

$$I=\left[\tan^{-1}x\right]_{1}^{\sqrt{3}}$$

$$I=\tan^{-1}(\sqrt{3})-\tan^{-1}(1)$$

Since
$$\tan^{-1}(1)=\frac{\pi}{4}$$
and
$$\tan^{-1}(\sqrt{3})=\frac{\pi}{3}$$
(for the given options)

Therefore,

$$I=\frac{\pi}{3}-\frac{\pi}{4}
=\frac{4\pi-3\pi}{12}
=\frac{\pi}{12}$$

Final answer

$$\boxed{\frac{\pi}{12}}$$

Trusted step-by-step solutions by Anand Classes โ€” ideal for JEE and CBSE practice, helping students build strong conceptual clarity in calculus.


NCERT Question 22: Evaluate the integral
$$I=\int_{0}^{\dfrac{2}{3}}\frac{dx}{4+9x^{2}}$$

Solution

$$I=\int_{0}^{\dfrac{2}{3}}\frac{dx}{4+9x^{2}}$$

Write the integrand in standard form:

$$\frac{1}{4+9x^{2}}=\frac{1}{4\left(1+\left(\frac{3x}{2}\right)^{2}\right)}$$

Thus,

$$I=\int_{0}^{\frac{2}{3}}\frac{1}{4\left(1+\left(\frac{3x}{2}\right)^{2}\right)}dx
=\frac{1}{4}\int_{0}^{\frac{2}{3}}\frac{dx}{1+\left(\frac{3x}{2}\right)^{2}}$$

Let
$$u=\frac{3x}{2}\Rightarrow du=\frac{3}{2}dx\Rightarrow dx=\frac{2}{3}du$$

When $(x=0\Rightarrow u=0)$
When $(x=\frac{2}{3}\Rightarrow u=1)$

Now substitute:

$$I=\frac{1}{4}\int_{0}^{1}\frac{1}{1+u^{2}}\left(\frac{2}{3}\right)du$$

$$I=\frac{1}{6}\int_{0}^{1}\frac{du}{1+u^{2}}$$

The antiderivative is:

$$\int\frac{du}{1+u^{2}}=\tan^{-1}u$$

So,

$$I=\frac{1}{6}\left[\tan^{-1}u\right]_{0}^{1}$$

$$I=\frac{1}{6}\left(\tan^{-1}1-\tan^{-1}0\right)$$

$$I=\frac{1}{6}\left(\frac{\pi}{4}-0\right)$$

$$I=\frac{\pi}{24}$$

Final answer

$$\boxed{\frac{\pi}{24}}$$

Download high-quality notes and solved integrals from Anand Classes โ€” perfect for JEE and CBSE students who want clear, accurate, and exam-focused solutions.

โฌ…๏ธ NCERT Solutions Exercise 7.9 NCERT Solutions Exercise 7.8 (Set-1) โžก๏ธ

๐Ÿ“š Buy Study Material & Join Our Coaching

For premium study materials specially designed for JEE, NEET, NDA, CDS, AFCAT, SSC Exams, visit our official study material portal:
๐Ÿ‘‰ https://publishers.anandclasses.co.in/

For JEE/NEET Notes : Visit https://anandclasses.in/

For NDA Notes : Visit https://nda.anandclasses.in/

For SSC Notes : Visit https://ssc.anandclasses.in/

For CDS, AFCAT Notes : Visit https://cds-afcat.anandclasses.in/

To enroll in our offline or online coaching programs, visit our coaching center website:
๐Ÿ‘‰ https://anandclasses.co.in/

๐Ÿ“ž Call us directly at: +91-94631-38669

๐Ÿ’ฌ WhatsApp Us Instantly

Need quick assistance or want to inquire about classes and materials?

๐Ÿ“ฒ Click below to chat instantly on WhatsApp:
๐Ÿ‘‰ Chat on WhatsApp

๐ŸŽฅ Watch Video Lectures

Get access to high-quality video lessons, concept explainers, and revision tips by subscribing to our official YouTube channel:
๐Ÿ‘‰ Neeraj Anand Classes โ€“ YouTube Channel

RELATED TOPICS