Anand Classes is pleased to provide a free downloadable PDF of the NCERT Solutions for Class 12 Maths Chapter 7 โ Integrals, Exercise 7.3 (Set-3). This set is thoughtfully crafted to help students master trigonometric-integral problems such as those involving powers of sine and cosine, products like sinโกAโcosโกB, and repeated products of cosinesโtopics highlighted in standard solution collections for Exercise 7.3. The detailed, step-by-step solutions adhere strictly to the latest CBSE/NCERT syllabus and are ideal for effective revision and exam readiness. Click the print button to download study material and notes.
NCERT Question 16: Evaluate the Integral
$$\displaystyle \int \tan^4(x)\; dx$$
Solution
Use the identity $\tan^2 x = \sec^2 x – 1$ to write
$$\tan^4 x = (\tan^2 x)^2 = (\sec^2 x – 1)^2 = \sec^4 x – 2\sec^2 x + 1.$$
So
$$\int \tan^4(x)\; dx = \int \sec^4 x\; dx – 2\int \sec^2 x\; dx + \int 1\; dx.$$
Evaluate $\displaystyle\int \sec^4 x\; dx$ by setting $u=\tan x$, $du=\sec^2 x\; dx$:
$$\int \sec^4 x\; dx = \int \sec^2 x(1+\tan^2 x)\; dx $$
$$\int \sec^4 x\; dx = \int (1+u^2)\; du$$
$$\int \sec^4 x\; dx = u + \frac{u^3}{3} + C$$
$$\int \sec^4 x\; dx = \tan x + \frac{1}{3}\tan^3 x + C.$$
Also $\displaystyle\int \sec^2 x\; dx = \tan x$ and $\displaystyle\int 1\; dx = x$.
Therefore
$$
\int \tan^4(x)\; dx
= \Bigl(\tan x + \frac{1}{3}\tan^3 x\Bigr) – 2\tan x + x + C $$
$$\int \tan^4(x)\; dx = x – \tan x + \frac{1}{3}\tan^3 x + C.$$
Final Answer
$$\boxed{\displaystyle \int \tan^4(x)\; dx = x – \tan x + \frac{1}{3}\tan^3 x + C}$$
Download concise solved integrals by Anand Classes โ perfect for quick revision for JEE, NEET, and CBSE preparation.
NCERT Question 17: Evaluate the Integral
$$\displaystyle \int \frac{\sin^3(x)+\cos^3(x)}{\sin^2(x)\cos^2(x)}\; dx$$
Solution
$$\displaystyle \int \frac{\sin^3(x)+\cos^3(x)}{\sin^2(x)\cos^2(x)}\; dx$$
Simplify the integrand:
$$\frac{\sin^3 x+\cos^3 x}{\sin^2 x\cos^2 x}
=\frac{\sin^3 x}{\sin^2 x\cos^2 x}+\frac{\cos^3 x}{\sin^2 x\cos^2 x}
=\frac{\sin x}{\cos^2 x}+\frac{\cos x}{\sin^2 x}$$
Rewrite using standard trig functions:
$$\frac{\sin x}{\cos^2 x}=\tan x\sec x,\qquad
\frac{\cos x}{\sin^2 x}=\cot x\csc x$$
So the integral becomes
$$\int\bigl(\tan x\sec x+\cot x\csc x\bigr)\; dx
=\int \sec x\tan x\; dx+\int \cot x\csc x\; dx$$
Use known antiderivatives $\dfrac{d}{dx}(\sec x)=\sec x\tan x$
and $\dfrac{d}{dx}(\csc x)=-\csc x\cot x$:
$$\int \sec x\tan x\; dx=\sec x,\qquad
\int \cot x\csc x\; dx=-\csc x$$
Final Answer
$$\boxed{\displaystyle \int \frac{\sin^3(x)+\cos^3(x)}{\sin^2(x)\cos^2(x)}\; dx = \sec x – \csc x + C}$$
Download concise worked solutions and practice notes by Anand Classes โ perfect for JEE, NEET, and CBSE exam preparation.
NCERT Question 18: Evaluate the Integral
$$\displaystyle \int \frac{\cos(2x) + 2\sin^2(x)}{\cos^2(x)}\; dx$$
Solution
$$\displaystyle \int \frac{\cos(2x) + 2\sin^2(x)}{\cos^2(x)}\; dx$$
First, expand the numerator using the identity
$$\cos(2x) = \cos^2(x) – \sin^2(x)$$
So,
$$\cos(2x) + 2\sin^2(x) = \cos^2(x) – \sin^2(x) + 2\sin^2(x) = \cos^2(x) + \sin^2(x) = 1$$
Hence the integrand simplifies to
$$\frac{1}{\cos^2(x)} = \sec^2(x)$$
Now integrate:
$$\int \sec^2(x)\; dx = \tan(x) + C$$
Final Answer
$$\boxed{\displaystyle \int \frac{\cos(2x) + 2\sin^2(x)}{\cos^2(x)}\; dx = \tan(x) + C}$$
Practice more such simplifications and integrals with Anand Classes โ your one-stop destination for conceptual clarity and speed in JEE, NEET, and CBSE exams.
NCERT Question 19: Evaluate the Integral
$$\displaystyle \int \frac{1}{\sin x\cos^3 x}\; dx$$
Solution
$$\displaystyle \int \frac{1}{\sin x\cos^3 x}\; dx$$
Note that $\csc x=\dfrac{\sec x}{\tan x}$, so
$$
\frac{1}{\sin x\cos^3 x}=\sec^3 x\csc x=\sec^4 x\cdot\frac{1}{\tan x}.
$$
Using $u=\tan x$ and $du=\sec^2 x\; dx$ we get
$$
\sec^4 x\cdot\frac{1}{\tan x}\; dx
=\frac{\sec^2 x}{\tan x}\cdot\sec^2 x\; dx
=\frac{1+u^2}{u}\; du
=\left(\frac{1}{u}+u\right)\; du.
$$
Integrate:
$$
\int\left(\frac{1}{u}+u\right)\; du
=\ln|u|+\frac{u^2}{2}+C.
$$
Substitute back $u=\tan x$:
$$
\boxed{\displaystyle \int \frac{1}{\sin x\cos^3 x}\; dx
=\ln\bigl|\tan x\bigr|+\frac{1}{2}\tan^2 x + C.}
$$
Download complete worked solutions by Anand Classes โ perfect for JEE, NEET and CBSE exam preparation.
NCERT Question 20: Evaluate the Integral
$$\displaystyle \int \frac{\cos(2x)}{\bigl(\cos x+\sin x\bigr)^2}\; dx$$
Solution
$$\displaystyle \int \frac{\cos(2x)}{\bigl(\cos x+\sin x\bigr)^2}\; dx$$
Use the identity
$$\cos(2x)=\cos^2 x-\sin^2 x=(\cos x+\sin x)(\cos x-\sin x).$$
Hence the integrand simplifies:
$$\frac{\cos(2x)}{(\cos x+\sin x)^2}=\frac{(\cos x+\sin x)(\cos x-\sin x)}{(\cos x+\sin x)^2}
=\frac{\cos x-\sin x}{\cos x+\sin x}.$$
Let
$$u=\cos x+\sin x\quad\Rightarrow\quad du=(\cos x-\sin x)\; dx.$$
The integral becomes
$$\int \frac{du}{u}=\ln\bigl|u\bigr|+C.$$
Substituting back $u=\cos x+\sin x$ gives the final result.
Final Answer
$$\boxed{\displaystyle \int \frac{\cos(2x)}{\bigl(\cos x+\sin x\bigr)^2}\; dx = \ln\bigl|\cos x+\sin x\bigr| + C}$$
NCERT Question 21: Evaluate the Integral
$$\displaystyle \int \sin^{-1}(\cos x)\; dx$$
Solution
$$\displaystyle \int \sin^{-1}(\cos x)\; dx$$
Let
$$I=\int \sin^{-1}(\cos x)\; dx.$$
We know that
$$\cos x=\sin\left(\frac{\pi}{2}-x\right),$$
so
$$\sin^{-1}(\cos x)=\sin^{-1}\left[\sin\left(\frac{\pi}{2}-x\right)\right]=\frac{\pi}{2}-x.$$
Therefore,
$$I=\int\left(\frac{\pi}{2}-x\right)\; dx.$$
Integrate termwise:
$$I=\frac{\pi x}{2}-\frac{x^2}{2}+C.$$
Final Answer
$$\boxed{\displaystyle \int \sin^{-1}(\cos x)\; dx=\frac{\pi x}{2}-\frac{x^2}{2}+C}$$
Study concept-based NCERT integration problems with Anand Classes โ perfect for JEE, NEET, and CBSE exams.
NCERT Question 22: Evaluate the Integral
$$\displaystyle \int \frac{dx}{\cos(x-a)\cos(x-b)}$$
Solution
$$\displaystyle \int \frac{dx}{\cos(x-a)\cos(x-b)}$$
Use the identity
$$\tan(x-b)-\tan(x-a)=\frac{\sin\bigl((x-b)-(x-a)\bigr)}{\cos(x-a)\cos(x-b)}=\frac{\sin(a-b)}{\cos(x-a)\cos(x-b)}$$
Hence
$$\frac{1}{\cos(x-a)\cos(x-b)}=\frac{\tan(x-b)-\tan(x-a)}{\sin(a-b)}.$$
So
$$\int \frac{dx}{\cos(x-a)\cos(x-b)}=\frac{1}{\sin(a-b)}\int\bigl(\tan(x-b)-\tan(x-a)\bigr)\; dx $$
$$\int \frac{dx}{\cos(x-a)\cos(x-b)}=\frac{1}{\sin(a-b)}\Bigl(-\ln\bigl|\cos(x-b)\bigr|+\ln\bigl|\cos(x-a)\bigr|\Bigr)+C$$
Final Answer
$$\boxed{\displaystyle \int \frac{dx}{\cos(x-a)\cos(x-b)}
=\frac{1}{\sin(a-b)}\ln\left|\frac{\cos(x-a)}{\cos(x-b)}\right|+C}$$
Study concept notes-based NCERT integration problems with Anand Classes โ excellent for JEE, NEET, and CBSE exams.
NCERT Question 23: Evaluate the Integral
$$\displaystyle \int \frac{\sin^2 x – \cos^2 x}{\sin^2 x\;\cos^2 x}\; dx$$
Options:
(A) $\tan x + \cot x + C$
(B) $\tan x + \csc x + C$
(C) $-\tan x + \cot x + C$
(D) $\tan x + \sec x + C$
Solution
$$\displaystyle \int \frac{\sin^2 x – \cos^2 x}{\sin^2 x\;\cos^2 x}\; dx$$
We have
$$\frac{\sin^2 x – \cos^2 x}{\sin^2 x\;\cos^2 x}
= \frac{\sin^2 x}{\sin^2 x\;\cos^2 x} – \frac{\cos^2 x}{\sin^2 x\;\cos^2 x}
= \frac{1}{\cos^2 x} – \frac{1}{\sin^2 x}.$$
That is,
$$\frac{\sin^2 x – \cos^2 x}{\sin^2 x\;\cos^2 x}
= \sec^2 x – \csc^2 x.$$
Now integrate each term:
$$\int (\sec^2 x – \csc^2 x)\; dx
= \int \sec^2 x\; dx – \int \csc^2 x\; dx.$$
We know that
$$\int \sec^2 x\; dx = \tan x,\quad \int \csc^2 x\; dx = -\cot x.$$
Hence,
$$\int (\sec^2 x – \csc^2 x)\; dx = \tan x + \cot x + C.$$
Final Answer
$$\boxed{\displaystyle \tan x + \cot x + C}$$
โ Correct Option: (A)
Boost your calculus practice with expertly solved NCERT integration problems from Anand Classes โ perfect for JEE, NEET, and CBSE exam preparation.
NCERT Question 24: Evaluate the integral
$$\displaystyle \int \frac{e^{x}(1+x)}{\cos^2\bigl(e^{x}x\bigr)}\; dx$$
Options:
(A) $-\cot\bigl(e^{x}x\bigr)+C$
(B) $\tan\bigl(e^{x}x\bigr)+C$
(C) $\tan\bigl(e^{x}\bigr)+C$
(D) $\cot\bigl(e^{x}\bigr)+C$
Solution
$$\displaystyle \int \frac{e^{x}(1+x)}{\cos^2\bigl(e^{x}x\bigr)}\; dx$$
Let
$$u = e^{x}x.$$
Differentiate to get
$$du = \bigl(e^{x}+x e^{x}\bigr)\; dx = e^{x}(1+x)\; dx.$$
Thus the integral becomes
$$\int \frac{e^{x}(1+x)}{\cos^2\bigl(e^{x}x\bigr)}\; dx
= \int \frac{du}{\cos^2 u}
= \int \sec^2 u\; du.$$
Integrate:
$$\int \sec^2 u\; du = \tan u + C.$$
Substitute back $u = e^{x}x$ to obtain
$$\boxed{\displaystyle \tan\bigl(e^{x}x\bigr) + C}$$
Final choice
Correct option: (B).
Boost your calculus preparation with expertly solved NCERT integration problems from Anand Classes โ perfect for JEE, NDA, and CBSE exam preparation.
