Integrals NCERT Solutions Exercise 7.2 Chapter-7 Class 12 Math PDF Free Download (Set-4)

⭐⭐⭐⭐⭐ (5/5 from 45981 reviews)

NCERT Question 31: Evaluate the integral
$$\int \frac{\sin x}{(1 + \cos x)^2}\;dx$$

Solution :

$$\int \frac{\sin x}{(1 + \cos x)^2}\;dx$$

Let
$$1 + \cos x = t$$
Then differentiating,
$$-\sin x\;dx = dt \quad \Rightarrow \quad \sin x\;dx = -dt$$

Substitute in the integral:
$$\int \frac{\sin x}{(1 + \cos x)^2}\;dx = \int \frac{-dt}{t^2} = -\int t^{-2}\;dt$$

Integrate:
$$-\int t^{-2}\;dt = -\left(\frac{t^{-1}}{-1}\right) + C = \frac{1}{t} + C$$

Substitute back $t = 1 + \cos x$:
$$\frac{1}{t} + C = \frac{1}{1 + \cos x} + C$$

Final Answer

$$\boxed{\frac{1}{1 + \cos x} + C}$$

Master every type of trigonometric substitution and integration step with Anand Classes. Access complete NCERT-based calculus notes, perfect for students preparing for JEE, NEET, and CBSE examinations.


NCERT Question 32: Evaluate the integral
$$\int \frac{1}{1+\cot x}\;dx$$

Solution :

Rewrite the integrand using $\cot x=\dfrac{\cos x}{\sin x}$
$$\frac{1}{1+\cot x}=\frac{1}{1+\dfrac{\cos x}{\sin x}}=\frac{1}{\dfrac{\sin x+\cos x}{\sin x}}=\frac{\sin x}{\sin x+\cos x}.$$

So
$$\int \frac{1}{1+\cot x}\;dx=\int \frac{\sin x}{\sin x+\cos x}\;dx.$$

Split the integrand by adding and subtracting $\cos x$ in the numerator:
$$\frac{\sin x}{\sin x+\cos x}=\frac{1}{2}\cdot\frac{(\sin x+\cos x)+(\sin x-\cos x)}{\sin x+\cos x} $$

$$\frac{\sin x}{\sin x+\cos x}=\frac{1}{2}\Bigg(1+\frac{\sin x-\cos x}{\sin x+\cos x}\Bigg).$$

Thus
$$\int \frac{\sin x}{\sin x+\cos x}\;dx =\frac{1}{2}\int dx+\frac{1}{2}\int\frac{\sin x-\cos x}{\sin x+\cos x}\;dx $$

$$\int \frac{\sin x}{\sin x+\cos x}\;dx =\frac{x}{2}+\frac{1}{2}\int\frac{\sin x-\cos x}{\sin x+\cos x}\;dx.$$

Put
$$t=\sin x+\cos x\quad\Rightarrow\quad dt=(\cos x-\sin x)\;dx=-(\sin x-\cos x)\;dx.$$
Hence $(\sin x-\cos x)\;dx=-dt$ and
$$\frac{1}{2}\int\frac{\sin x-\cos x}{\sin x+\cos x}\;dx
=\frac{1}{2}\int\frac{-dt}{t}=-\frac{1}{2}\ln|t|+C.$$

Substitute back $t=\sin x+\cos x$ to get
$$=\frac{x}{2}-\frac{1}{2}\ln\big|\sin x+\cos x\big|+C.$$

Final Answer

$$\boxed{\;\frac{x}{2}-\frac{1}{2}\ln\big|\sin x+\cos x\big|+C\;}$$

Improve your calculus performance with clear NCERT-style solutions from Anand Classes — concise step-by-step notes and practice material ideal for JEE and CBSE preparation, available for download and review.


NCERT Question 33: Evaluate the integral
$$\int \frac{1}{1-\tan x}\;dx$$

Solution :

$$\int \frac{1}{1-\tan x}\;dx$$

We know that $\tan x = \dfrac{\sin x}{\cos x}$, hence

$$\int \frac{1}{1-\tan x}\;dx = \int \frac{1}{1-\dfrac{\sin x}{\cos x}}\;dx = \int \frac{\cos x}{\cos x-\sin x}\;dx.$$

$$\int \frac{\cos x}{\cos x-\sin x}\;dx = \frac{1}{2}\int \frac{2\cos x}{\cos x-\sin x}\;dx $$ $$ = \frac{1}{2}\int \frac{(\cos x-\sin x)+(\sin x+\cos x)}{\cos x-\sin x}\;dx.$$

Separate the terms:

$$I = \frac{1}{2}\int 1\;dx + \frac{1}{2}\int \frac{\sin x+\cos x}{\cos x-\sin x}\;dx.$$

Let $\cos x – \sin x = t \Rightarrow (-\sin x – \cos x)\;dx = dt.$

Then
$$\sin x + \cos x = -\frac{dt}{dx}$$
and the integral becomes

$$ = \frac{1}{2}x + \frac{1}{2}\int \frac{-(dt)}{t} = \frac{1}{2}x – \frac{1}{2}\log|t| + C.$$

Substitute back $t = \cos x – \sin x$:

$$ = \frac{x}{2} – \frac{1}{2}\log|\cos x – \sin x| + C.$$

Hence,
$$\boxed{\;I = \frac{x}{2} – \frac{1}{2}\log|\cos x – \sin x| + C\;}$$

For stepwise NCERT-style calculus solutions and detailed integration techniques, explore study materials by Anand Classes — ideal for CBSE and JEE preparation with clear conceptual clarity.


NCERT Question 34: Evaluate the integral
$$\int \frac{\sqrt{\tan x}}{\sin x\cos x}\;dx$$

Solution :

$$\int \frac{\sqrt{\tan x}}{\sin x\cos x}\;dx$$

Put
$$t=\sqrt{\tan x}\quad\Rightarrow\quad t^2=\tan x.$$

Differentiate both sides:
$$2t\;dt=\sec^2 x\;dx.$$

Solve for $dx$:
$$dx=\frac{2t\;dt}{\sec^2 x}=2t\cos^2 x\;dt.$$

Now substitute into the integrand. Since $\sqrt{\tan x}=t$ we get
$$
\frac{\sqrt{\tan x}}{\sin x\cos x}\;dx
= \frac{t}{\sin x\cos x}\cdot 2t\cos^2 x\;dt
=2t^2\frac{\cos^2 x}{\sin x\cos x}\;dt $$

$$\frac{\sqrt{\tan x}}{\sin x\cos x}\;dx =2t^2\frac{\cos x}{\sin x}\;dt =2t^2\cot x\;dt. $$
But $\tan x=t^2$ so $\cot x=\dfrac{1}{\tan x}=\dfrac{1}{t^2}$. Therefore the integrand becomes simply
$$2t^2\cdot\frac{1}{t^2}\;dt=2\;dt.$$

Thus the integral reduces to
$$\int 2\;dt=2t+C.$$

Substitute back $t=\sqrt{\tan x}$ to obtain the result.

Final Answer

$$\boxed{\;2\sqrt{\tan x}+C\;}$$

Practice more NCERT-style integrals with Anand Classes — clear step-by-step solutions, downloadable notes, and exam-focused practice ideal for JEE NEET and CBSE preparation.


NCERT Question 35: Evaluate the integral
$$\int \frac{(1+\log x)^2}{x}\;dx$$

Solution :

$$\int \frac{(1+\log x)^2}{x}\;dx$$

Let
$$1+\log x=t\quad\Rightarrow\quad \frac{1}{x}\;dx=dt$$

Substituting in the integral,
$$\int \frac{(1+\log x)^2}{x}\;dx=\int t^2\;dt$$

Integrate:
$$\int t^2\;dt=\frac{t^3}{3}+C$$

Now substitute back $t=1+\log x$:
$$I=\frac{(1+\log x)^3}{3}+C$$

Final Answer

$$\boxed{\;\frac{(1+\log x)^3}{3}+C\;}$$

Master your integration concepts with detailed NCERT-based explanations from Anand Classes — perfect for CBSE, JEE, and competitive exam preparation with downloadable notes and step-by-step guidance.


NCERT Question 36: Evaluate the integral
$$\int \frac{(x+1)(x+\log x)^2}{x}\;dx$$

Solution :

$$\int \frac{(x+1)(x+\log x)^2}{x}\;dx$$

Rewrite the expression:
$$\frac{(x+1)(x+\log x)^2}{x}=\left(1+\frac{1}{x}\right)(x+\log x)^2$$

Let
$$(x+\log x)=t \quad\Rightarrow\quad \left(1+\frac{1}{x}\right)dx=dt$$

Substituting,
$$\int \left(1+\frac{1}{x}\right)(x+\log x)^2\;dx=\int t^2\;dt$$

Integrate:
$$\int t^2\;dt=\frac{t^3}{3}+C$$

Now substitute $t=x+\log x$:
$$=\frac{(x+\log x)^3}{3}+C$$

Final Answer

$$\boxed{\;\frac{(x+\log x)^3}{3}+C\;}$$

Strengthen your integration skills with Anand Classes — providing step-by-step NCERT solutions, detailed explanations, and exam-oriented study notes for JEE and CBSE preparation.


NCERT Question 37: Evaluate the integral
$$\int \frac{x^{3}\;\sin\big(\tan^{-1}x^{4}\big)}{1+x^{8}}\;dx$$

Solution :

$$\int \frac{x^{3}\;\sin\big(\tan^{-1}x^{4}\big)}{1+x^{8}}\;dx$$

Put
$$t = x^{4}\quad\Rightarrow\quad dt = 4x^{3}\:dx\quad\Rightarrow\quad x^{3}\:dx=\frac{dt}{4}.$$

The integral becomes
$$\int \frac{x^{3}\sin(\tan^{-1}x^{4})}{1+x^{8}}\:dx
=\frac{1}{4}\int \frac{\sin(\tan^{-1}t)}{1+t^{2}}\:dt.$$

Now put
$$u=\tan^{-1}t\quad\Rightarrow\quad du=\frac{dt}{1+t^{2}}.$$

Hence the integral reduces to
$$\frac{1}{4}\int \sin u\:du=\frac{1}{4}(-\cos u)+C=-\frac{1}{4}\cos u + C.$$

Substitute back $u=\tan^{-1}t$ and $t=x^{4}$ to get
$$-\frac{1}{4}\cos\big(\tan^{-1}x^{4}\big)+C.$$

We may simplify $\cos(\tan^{-1}x^{4})$: for $u=\tan^{-1}t$ we have $\cos u=\dfrac{1}{\sqrt{1+t^{2}}}$, so with $t=x^{4}$ an equivalent form is
$$-\frac{1}{4}\cdot\frac{1}{\sqrt{1+x^{8}}}+C.$$

Final Answer

$$\boxed{-\frac{1}{4}\cos\big(\tan^{-1}x^{4}\big)+C
=-\frac{1}{4\sqrt{1+x^{8}}}+C}$$

Explore clear, step-by-step NCERT integration solutions from Anand Classes — concise explanations and downloadable notes ideal for JEE, NEET, and CBSE exam preparation.


NCERT Question 38: Evaluate the integral
$$
\int \frac{10x^{9} + 10^{x} \ln 10}{10^{x} + x^{10}}\:dx
$$

Solution

$$
\int \frac{10x^{9} + 10^{x} \ln 10}{10^{x} + x^{10}}\:dx
$$

Let
$$
t = 10^{x} + x^{10}
$$
Then,
$$
dt = (10^{x} \ln 10 + 10x^{9})\;dx
$$

Hence,
$$
\int \frac{10x^{9} + 10^{x} \ln 10}{10^{x} + x^{10}}\;dx = \int \frac{dt}{t}
$$

Therefore,
$$
\int \frac{dt}{t} = \ln |t| + C
$$

Substituting back the value of $t$, we get
$$
\ln |10^{x} + x^{10}| + C
$$

Final Answer : Option (D)

$$
\boxed{\ln(10^{x} + x^{10}) + C\;}
$$

Get expertly formatted integration solutions by Anand Classes, ideal for JEE and CBSE learners looking for clear, step-by-step explanations and top-quality notes.


NCERT Question 39: Evaluate the integral
$$\int \frac{1}{\sin^{2}x\cos^{2}x}\;dx$$

Solution :

$$\int \frac{1}{\sin^{2}x\cos^{2}x}\;dx$$

Use the Pythagorean identity $ \sin^{2}x+\cos^{2}x=1 $ and rewrite the integrand:
$$\frac{1}{\sin^{2}x\cos^{2}x}=\frac{\sin^{2}x+\cos^{2}x}{\sin^{2}x\cos^{2}x}$$

$$ \frac{1}{\sin^{2}x\cos^{2}x}=\frac{\sin^{2}x}{\sin^{2}x\cos^{2}x}+\frac{\cos^{2}x}{\sin^{2}x\cos^{2}x}.$$

Simplify each term:
$$\frac{\sin^{2}x}{\sin^{2}x\cos^{2}x}=\frac{1}{\cos^{2}x}=\sec^{2}x, $$

$$ \frac{\cos^{2}x}{\sin^{2}x\cos^{2}x}=\frac{1}{\sin^{2}x}=\csc^{2}x.$$

So the integral becomes
$$\int\frac{1}{\sin^{2}x\cos^{2}x}\;dx=\int\sec^{2}x\;dx+\int\csc^{2}x\;dx.$$

Integrate termwise:
$$\int\sec^{2}x\;dx=\tan x $$

$$ \int\csc^{2}x\;dx=-\cot x.$$

Therefore
$$\int\frac{1}{\sin^{2}x\cos^{2}x}\;dx=\tan x-\cot x + C.$$

Final Answer (choice)

$$\boxed{\;(B)\quad\tan x – \cot x + C\;}$$

Build confidence in trigonometric integrals with Anand Classes — clear NCERT-style step-by-step solutions and downloadable notes tailored for JEE, NEET, and CBSE preparation.

⬅️ NCERT Solutions Exercise 7.3 NCERT Solutions Exercise 7.2 (Set-3) ➡️

📚 Buy Study Material & Join Our Coaching

For premium study materials specially designed for JEE, NEET, NDA, CDS, AFCAT, SSC Exams, visit our official study material portal:
👉 https://publishers.anandclasses.co.in/

For JEE/NEET Notes : Visit https://anandclasses.in/

For NDA Notes : Visit https://nda.anandclasses.in/

For SSC Notes : Visit https://ssc.anandclasses.in/

For CDS, AFCAT Notes : Visit https://cds-afcat.anandclasses.in/

To enroll in our offline or online coaching programs, visit our coaching center website:
👉 https://anandclasses.co.in/

📞 Call us directly at: +91-94631-38669

💬 WhatsApp Us Instantly

Need quick assistance or want to inquire about classes and materials?

📲 Click below to chat instantly on WhatsApp:
👉 Chat on WhatsApp

🎥 Watch Video Lectures

Get access to high-quality video lessons, concept explainers, and revision tips by subscribing to our official YouTube channel:
👉 Neeraj Anand Classes – YouTube Channel

RELATED TOPICS