Anand Classes provides detailed NCERT Solutions for Integrals Exercise 7.10 of Chapter 7 for Class 12 Mathematics, offering step-by-step explanations to help students understand and apply advanced integration techniques effectively. These Set-1 notes are based on the latest NCERT syllabus and are ideal for revision, doubt-clearing, and board exam preparation. Click the print button to download study material and notes.
NCERT Question 1: Evaluate the integral
$$\int_{0}^{\dfrac{\pi}{2}} \cos^{2}x\;dx$$
Solution
Let the given integral be
$$I=\int_{0}^{\dfrac{\pi}{2}} \cos^{2}x\;dx \quad ……..(1)$$
Using the property $\int_{0}^{a} f(x)\;dx=\int_{0}^{a} f(a-x)\;dx$, we get
$$I=\int_{0}^{\dfrac{\pi}{2}} \cos^{2}\left(\frac{\pi}{2}-x\right)\;dx$$
Since $\cos\left(\dfrac{\pi}{2}-x\right)=\sin x$, this becomes
$$I=\int_{0}^{\dfrac{\pi}{2}} \sin^{2}x\;dx \quad ………(2)$$
Adding (1) and (2):
$$I+I=\int_{0}^{\dfrac{\pi}{2}} \cos^{2}x\;dx + \int_{0}^{\dfrac{\pi}{2}} \sin^{2}x\;dx$$
$$2I=\int_{0}^{\dfrac{\pi}{2}} \left(\sin^{2}x+\cos^{2}x\right)\;dx$$
Using the identity $\sin^{2}x+\cos^{2}x = 1$
$$2I=\int_{0}^{\dfrac{\pi}{2}} 1\;dx$$
$$2I=\left[x\right]_{0}^{\dfrac{\pi}{2}}$$
$$2I=\dfrac{\pi}{2}$$
$$I=\dfrac{\pi}{4}$$
Final Result
$$\boxed{\dfrac{\pi}{4}}$$
Enhance your preparation with professionally formatted calculus solutions and high-quality study notes from Anand Classes, ideal for CBSE and JEE students looking for clear and reliable explanations.
NCERT Question 2: Evaluate the integral
$$I=\int_{0}^{\dfrac{\pi}{2}}\frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}}\;dx$$
Solution
Let $$I=\displaystyle\int_{0}^{\dfrac{\pi}{2}}\frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}}\;dx.$$
Use the symmetry property $\displaystyle\int_{0}^{a}f(x)\;dx=\int_{0}^{a}f(a-x)\;dx$ with $a=\dfrac{\pi}{2}$.
Applying it gives
$$I=\int_{0}^{\dfrac{\pi}{2}}\dfrac{\sqrt{\sin\left(\dfrac{\pi}{2}-x\right)}}{\sqrt{\sin\left(\dfrac{\pi}{2}-x\right)}+\sqrt{\cos\left(\dfrac{\pi}{2}-x\right)}}\;dx
=\int_{0}^{\dfrac{\pi}{2}}\dfrac{\sqrt{\cos x}}{\sqrt{\cos x}+\sqrt{\sin x}}\;dx.$$
Add the two forms.
Adding the original and the transformed integral:
$$
2I=\int_{0}^{\dfrac{\pi}{2}}\dfrac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}}\;dx
+\int_{0}^{\dfrac{\pi}{2}}\dfrac{\sqrt{\cos x}}{\sqrt{\cos x}+\sqrt{\sin x}}\;dx
=\int_{0}^{\dfrac{\pi}{2}}1\;dx.
$$
Evaluate the right-hand side.
$$
2I=\left[x\right]_{0}^{\frac{\pi}{2}}=\frac{\pi}{2}.
$$
Solve for $I$.
$$
I=\frac{\pi}{4}.
$$
Final Result
$$\boxed{\;I=\frac{\pi}{4}\;}$$
Concise, exam-focused solutions and downloadable notes by Anand Classes โ clear step-by-step explanations ideal for CBSE and JEE revision, perfect for quick practice and strengthening calculus fundamentals.
NCERT Question 3: Evaluate the integral
$$I=\int_{0}^{\dfrac{\pi}{2}}\frac{\sin^{3/2}x}{\sin^{3/2}x+\cos^{3/2}x}\;dx$$
Solution
Let
$$I=\int_{0}^{\dfrac{\pi}{2}}\frac{\sin^{3/2}x}{\sin^{3/2}x+\cos^{3/2}x}\;dx\qquad…………..(1)$$
Use the symmetry property $\displaystyle\int_{0}^{a}f(x)\;dx=\int_{0}^{a}f(a-x)\;dx$ with $a=\dfrac{\pi}{2}$. Applying it gives
$$I=\int_{0}^{\dfrac{\pi}{2}}\frac{\sin^{3/2}\big(\dfrac{\pi}{2}-x\big)}{\sin^{3/2}\big(\dfrac{\pi}{2}-x\big)+\cos^{3/2}\big(\dfrac{\pi}{2}-x\big)}\;dx$$
$$I=\int_{0}^{\dfrac{\pi}{2}}\frac{\cos^{3/2}x}{\cos^{3/2}x+\sin^{3/2}x}\;dx\qquad………(2)$$
Add (1) and (2).
$$
2I=\int_{0}^{\dfrac{\pi}{2}}\frac{\sin^{3/2}x}{\sin^{3/2}x+\cos^{3/2}x}\;dx
+\int_{0}^{\dfrac{\pi}{2}}\frac{\cos^{3/2}x}{\cos^{3/2}x+\sin^{3/2}x}\;dx $$
$$ I=\int_{0}^{\dfrac{\pi}{2}}1\;dx. $$
Hence
$$
2I=\left[x\right]_{0}^{\frac{\pi}{2}}=\frac{\pi}{2}\quad\Rightarrow\quad I=\frac{\pi}{4}.
$$
Final Result
$$\boxed{\;I=\frac{\pi}{4}\;}$$
Concise, well-structured notes by Anand Classes โ ideal for JEE and CBSE revision, with clear step-by-step solutions for fast exam preparation and practice.
NCERT Question 4 : Evaluate the integral
$$I=\int_{0}^{\dfrac{\pi}{2}}\frac{\sin^{5}x}{\sin^{5}x+\cos^{5}x}\;dx$$
Solution
Let
$$I=\int_{0}^{\dfrac{\pi}{2}}\frac{\sin^{5}x}{\sin^{5}x+\cos^{5}x}\;dx$$
Use the symmetry property
$ \displaystyle\int_{0}^{a}f(x)\;dx=\int_{0}^{a}f(a-x)\;dx$ with $a=\dfrac{\pi}{2}$.
Apply it to $I$ by replacing $x$ with $\dfrac{\pi}{2}-x$. Since $\sin\big(\dfrac{\pi}{2}-x\big)=\cos x$ and $\cos\big(\dfrac{\pi}{2}-x\big)=\sin x$, we get
$$I=\int_{0}^{\dfrac{\pi}{2}}\frac{\cos^{5}x}{\cos^{5}x+\sin^{5}x}\;dx.$$
Add the two expressions for $I$.
$$
2I=\int_{0}^{\dfrac{\pi}{2}}\frac{\sin^{5}x}{\sin^{5}x+\cos^{5}x}\;dx
+\int_{0}^{\dfrac{\pi}{2}}\frac{\cos^{5}x}{\cos^{5}x+\sin^{5}x}\;dx
=\int_{0}^{\dfrac{\pi}{2}}1\;dx.
$$
Evaluate the right-hand side.
$$
2I=\left[x\right]_{0}^{\frac{\pi}{2}}=\frac{\pi}{2}.
$$
Solve for $I$.
Final Result
$$\boxed{\;I=\frac{\pi}{4}\;}$$
Concise, exam-ready solutions from Anand Classes โ clear symmetric-integral tricks and stepwise methods perfect for CBSE and JEE revision, ideal for quick practice and downloadable notes.
NCERT Question 5 : Evaluate the integral
$$\int_{-5}^{5} \lvert x+2 \rvert \; dx$$
Solution
Let
$$I=\int_{-5}^{5} \lvert x+2 \rvert \; dx \quad \text{…(i)}$$
To remove the modulus, first find where the expression inside the modulus is zero:
$$x+2=0 \;\Rightarrow\; x=-2.$$
Since $-2 \in (-5,5)$, we split the integral at $x=-2$.
From (i),
$$I=\int_{-5}^{5} \lvert x+2 \rvert \; dx$$
$$I=\int_{-5}^{5} \lvert x+2 \rvert \; dx= \int_{-5}^{-2} \lvert x+2 \rvert \; dx + \int_{-2}^{5} \lvert x+2 \rvert \; dx.$$
Now apply the definition of modulus:
- For $x < -2$, $x+2$ is negative, so $\lvert x+2 \rvert = -(x+2)$
- For $x > -2$, $x+2$ is positive, so $\lvert x+2 \rvert = x+2$
Thus the integral becomes:
$$I=\int_{-5}^{-2} -(x+2) \; dx + \int_{-2}^{5} (x+2) \; dx.$$
Evaluate each part
First integral
$$\int_{-5}^{-2} -(x+2) \; dx = \int_{-5}^{-2} (-x-2)\; dx$$
$$\int_{-5}^{-2} -(x+2) \; dx= \left[-\frac{x^{2}}{2}-2x\right]_{-5}^{-2}$$
$$\int_{-5}^{-2} -(x+2) \; dx=\left(-2-(-4)\right)-\left(-\frac{25}{2}+10\right)$$
$$\int_{-5}^{-2} -(x+2) \; dx=2 – \left(-\frac{5}{2}\right)=\frac{9}{2}.$$
Second integral
$$\int_{-2}^{5} (x+2)\; dx=\left[\frac{x^{2}}{2}+2x\right]_{-2}^{5}$$
$$\int_{-2}^{5} (x+2)\; dx=\left(\frac{25}{2}+10\right)-\left(2-4\right)$$
$$\int_{-2}^{5} (x+2)\; dx=\frac{45}{2}+2=\frac{49}{2}.$$
Total value of Integration
$$I=\int_{-5}^{-2} -(x+2) \; dx + \int_{-2}^{5} (x+2) \; dx=\frac{9}{2}+\frac{49}{2}=\frac{58}{2}=29.$$
$$I=\int_{-5}^{5} \lvert x+2 \rvert \; dx = 29$$
Final Answer
$$\boxed{29}$$
Top-quality step-by-step calculus solutions like this are brought to you by Anand Classes, ideal for CBSE and JEE preparation with clean MathJax formatting for easy revision and notes.
NCERT Question 6: Evaluate the integral
$$\int_{2}^{8} \lvert x-5\rvert \; dx$$
Solution
Let
$$I=\int_{2}^{8} \lvert x-5\rvert \; dx.$$
To remove the modulus, find where the expression inside it becomes zero:
$$x-5=0 \quad \Rightarrow \quad x=5.$$
Since (5) lies between the limits (2) and (8), split the integral:
$$I=\int_{2}^{5} \lvert x-5\rvert \; dx + \int_{5}^{8} \lvert x-5\rvert \; dx.$$
For $(x<5), (x-5)$ is negative, so $(\lvert x-5\rvert = -(x-5) = (5-x)$.
For $(x>5), (x-5)$ is positive, so $(\lvert x-5\rvert = (x-5)$.
Thus,
$$I=\int_{2}^{5} (5-x)\; dx + \int_{5}^{8} (x-5)\; dx.$$
Compute each part
1. First integral
$$\int_{2}^{5} (5-x)\; dx = \left[5x – \frac{x^{2}}{2}\right]_{2}^{5}$$
Evaluate:
At $(x=5) : (25 – \frac{25}{2})$
At $(x=2): (10 – 2)$
Hence
$$\int_{2}^{5} (5-x)\; dx = \left[5x – \frac{x^{2}}{2}\right]_{2}^{5}=\left(25 – \frac{25}{2}\right) – (10 – 2)$$
$$\int_{2}^{5} (5-x)\; dx= \left(\frac{25}{2}\right) – 8= \frac{25 – 16}{2}= \frac{9}{2}.$$
$$\int_{2}^{5} (5-x)\; dx =\frac{9}{2} $$
2. Second integral
$$\int_{5}^{8} (x-5)\; dx
= \left[\frac{x^{2}}{2} – 5x\right]_{5}^{8}$$
Evaluate:
At $(x=8): (\frac{64}{2} – 40 = 32 – 40 = -8)$
At $(x=5): (\frac{25}{2} – 25 = -\frac{25}{2})$
Difference:
$$\int_{5}^{8} (x-5)\; dx
= \left[\frac{x^{2}}{2} – 5x\right]_{5}^{8}=-8 – \left(-\frac{25}{2}\right)
= -8 + \frac{25}{2}
= \frac{25 – 16}{2}
= \frac{9}{2}.$$
Add both parts
$$I=\int_{2}^{5} (5-x)\; dx + \int_{5}^{8} (x-5)\; dx.=\frac{9}{2} + \frac{9}{2} = 9$$
Final Result
$$\boxed{9}$$
High-quality formatted NCERT solutions like this are brought to you by Anand Classes, perfect for CBSE and JEE aspirants looking for clear steps and accurate evaluations in definite integrals.
NCERT Question 7: Evaluate the integral
$$I=\int_{0}^{1} x(1-x)^{n}\;dx$$
Solution
Let
$$I=\int_{0}^{1}x(1-x)^{n}\;dx $$
Use the definiteโintegral property
$$\int_{0}^{a}f(x)\;dx=\int_{0}^{a}f(a-x)\;dx$$
Here, $a=1$ and $f(x)=x(1-x)^{n}$.
Applying the property:
$$I=\int_{0}^{1}(1-x)\big(1-(1-x)\big)^{n}\;dx$$
Simplify inside the integrand:
Since $1-(1-x)=x$,
$$I=\int_{0}^{1}(1-x)x^{n}\;dx $$
$$I=\int_{0}^{1}(x^{n}-x^{n+1})\;dx $$
$$I=\left[\frac{x^{n+1}}{n+1}-\frac{x^{n+2}}{n+2}\right]_{0}^{1}$$
Thus:
$$
I=\left(\frac{1}{n+1}-\frac{1}{n+2}\right)
$$
$$I=\frac{1}{(n+1)(n+2)}$$
Final Result
$$\boxed{I=\frac{1}{(n+1)(n+2)}}$$
Detailed and accurate integral solutions by Anand Classes โ ideal for JEE and CBSE preparation with clear stepwise explanations and practice-oriented study material.
NCERT Question 8: Evaluate the integral
$$I=\int_{0}^{\dfrac{\pi}{4}}\ln\bigl(1+\tan x\bigr)\;dx$$
Solution
Let
$$I=\int_{0}^{\dfrac{\pi}{4}}\ln\bigl(1+\tan x\bigr)\;dx$$
Use the symmetry property $$\displaystyle\int_{0}^{a}f(x)\;dx=\int_{0}^{a}f(a-x)\;dx) $$ with $ a=\dfrac{\pi}{4}$
Apply $(x\mapsto \dfrac{\pi}{4}-x)$.
Note
$$
\tan\Big(\frac{\pi}{4}-x\Big)=\frac{1-\tan x}{1+\tan x}.
$$
Hence
$$
1+\tan\Big(\frac{\pi}{4}-x\Big)=\frac{2}{1+\tan x}.
$$
Therefore
$$
I=\int_{0}^{\dfrac{\pi}{4}}\ln\Big(1+\tan\Big(\frac{\pi}{4}-x\Big)\Big)\;dx
=\int_{0}^{\dfrac{\pi}{4}}\ln\Big(\frac{2}{1+\tan x}\Big)\;dx.
$$
Split the log:
$$
I=\int_{0}^{\dfrac{\pi}{4}}\bigl(\ln 2-\ln(1+\tan x)\bigr)\;dx
=\frac{\pi}{4}\ln 2 – I.
$$
Solve for (I).
$$
2I=\frac{\pi}{4}\ln 2\quad\Longrightarrow\quad I=\frac{\pi}{8}\ln 2.
$$
Final Result
$$\boxed{\;I=\frac{\pi}{8}\ln 2\;}$$
Download concise solved integrals by Anand Classes โ clear exam-focused explanations ideal for quick JEE and CBSE revision.
NCERT Question 9: Evaluate the integral
$$\int_{0}^{2} x\sqrt{2-x}\; dx$$
Solution :
$$\int_{0}^{2} x\sqrt{2-x}\; dx$$
Use the property
$$\int_0^a f(x)\; dx = \int_0^a f(a-x)\; dx.$$
Let
$$I = \int_{0}^{2} x\sqrt{2-x}\; dx.$$
Apply the property by replacing $(x)$ with $(2-x)$:
$$
I = \int_{0}^{2} (2-x)\sqrt{x}\; dx.
$$
$$I = \int_{0}^{2} (2x^{1/2}-x^{3/2})\; dx.$$
$$
I = \left[\frac{4}{3}x^{3/2} – \frac{2}{5}x^{5/2}\right]_{0}^{2}
$$
$$
I = \frac{4}{3}(2\sqrt{2}) – \frac{2}{5}(4\sqrt{2})
$$
$$
I = \frac{8\sqrt{2}}{3} – \frac{8\sqrt{2}}{5}
$$
$$
I = 8\sqrt{2}\left(\frac{1}{3} – \frac{1}{5}\right)
$$
$$
I = 8\sqrt{2}\left(\frac{2}{15}\right)
$$
$$
\boxed{I = \frac{16\sqrt{2}}{15}}
$$
NCERT Question 10: Evaluate the integral
$$I=\int_{0}^{\dfrac{\pi}{2}}\bigl(2\ln\sin x-\ln\sin 2x\bigr)\;dx$$
$$I=\int_{0}^{\dfrac{\pi}{2}}\bigl(2\ln\sin x-\ln\sin 2x\bigr)\;dx$$
Solution :
Step 1 โ simplify the integrand.
Use $\sin2x=2\sin x\cos x$ so
$$\ln\sin2x=\ln2+\ln\sin x+\ln\cos x.$$
Hence
$$2\ln\sin x-\ln\sin2x=\ln\sin x-\ln\cos x-\ln2=\ln(\tan x)-\ln2.$$
So
$$I=\int_{0}^{\dfrac{\pi}{2}}\ln(\tan x)\;dx-\int_{0}^{\dfrac{\pi}{2}}\ln2\;dx.$$
Step 2 โ evaluate the $\ln\tan x$ integral by symmetry.
Let
$$J=\int_{0}^{\dfrac{\pi}{2}}\ln(\tan x)\;dx.$$
Apply the substitution $x\mapsto \dfrac{\pi}{2}-x$; then $\tan\big(\dfrac{\pi}{2}-x\big)=\cot x$ and
$$J=\int_{0}^{\dfrac{\pi}{2}}\ln(\cot x)\;dx.$$
Add the two expressions:
$$2J=\int_{0}^{\dfrac{\pi}{2}}\bigl(\ln\tan x+\ln\cot x\bigr)\;dx=\int_{0}^{\dfrac{\pi}{2}}\ln 1\;dx=0\;$$
so
$$J=0$$
Step 3 โ finish. The remaining term is
$$I=0-\int_{0}^{\dfrac{\pi}{2}}\ln2\;dx=-\frac{\pi}{2}\ln2.$$
Final Result
$$\boxed{\;I=-\frac{\pi}{2}\ln 2\;}$$
Concise exam-ready solutions and downloadable notes by Anand Classes โ clear step-by-step explanations ideal for CBSE and JEE revision perfect for quick practice and strengthening calculus fundamentals.

