Anand Classes offers a free downloadable PDF of NCERT Solutions for Class 12 Maths Chapter 7 – Integrals, Exercise 7.5 (Set-2 Study Material), specially crafted with detailed, step-by-step solutions focused on integration by partial fractions and other rational‐function integration techniques. These solutions align with the latest CBSE/NCERT syllabus and are designed to help you master each question type, revise efficiently, and boost your performance in board exams. Click the print button to download study material and notes.
NCERT Question 13: Evaluate the integral
$$\int \frac{2}{(1-x)(1+x^2)} \; dx$$
Solution
$$\int \frac{2}{(1-x)(1+x^2)} \; dx$$
Decompose using partial fractions:
$$
\frac{2}{(1-x)(1+x^2)} = \frac{A}{1-x} + \frac{Bx+C}{1+x^2}
$$
Multiply through by $(1-x)(1+x^2)$:
$$
2 = A(1+x^2) + (Bx+C)(1-x)
$$
Expand:
$$
2 = A + Ax^2 + Bx – Bx^2 + C – Cx
$$
Combine like terms and equate coefficients:
$$
x^2: A-B = 0 \quad \Rightarrow B = A
$$
$$
x: B-C = 0 \quad \Rightarrow C = B
$$
$$
\text{constant term: } A + C = 2
$$
Solving:
$$
A = 1, \quad B = 1, \quad C = 1
$$
So:
$$
\frac{2}{(1-x)(1+x^2)} = \frac{1}{1-x} + \frac{x+1}{1+x^2}
$$
Step 1: Integrate each term
$$
\int \frac{2}{(1-x)(1+x^2)} \; dx = \int \frac{1}{1-x} \; dx + \int \frac{x}{1+x^2} \; dx + \int \frac{1}{1+x^2} \; dx
$$
$$
\int \frac{2}{(1-x)(1+x^2)} \; dx = -\int \frac{1}{x-1} \; dx + \frac{1}{2} \int \frac{2x}{1+x^2} \; dx + \int \frac{1}{1+x^2} \; dx
$$
$$
\int \frac{2}{(1-x)(1+x^2)} \; dx = -\ln|x-1| + \frac{1}{2} \ln|1+x^2| + \tan^{-1}x + C
$$
Final Answer
$$
\boxed{-\ln|x-1| + \frac{1}{2} \ln|1+x^2| + \tan^{-1}x + C}
$$
Download top-quality NCERT integration solutions by Anand Classes, perfect for JEE and CBSE preparation.
NCERT Question 14: Evaluate the integral
$$\int \frac{3x-1}{(x+2)^2} \; dx $$
Solution
$$\int \frac{3x-1}{(x+2)^2} \; dx $$
Decompose using partial fractions:
$$
\frac{3x-1}{(x+2)^2} = \frac{A}{x+2} + \frac{B}{(x+2)^2}
$$
Multiply through by $(x+2)^2$:
$$
3x-1 = A(x+2) + B
$$
Equate coefficients:
$$
x: A = 3
$$
$$
\text{constant term: } 2A + B = -1 \quad \Rightarrow B = -7
$$
So:
$$
\frac{3x-1}{(x+2)^2} = \frac{3}{x+2} – \frac{7}{(x+2)^2}
$$
Step 1: Integrate each term
$$
\int \frac{3x-1}{(x+2)^2} \; dx = \int \frac{3}{x+2} \; dx – \int \frac{7}{(x+2)^2} \; dx
$$
$$
\int \frac{3x-1}{(x+2)^2} \; dx = 3 \ln|x+2| – 7 \int (x+2)^{-2} \; dx
$$
$$
\int \frac{3x-1}{(x+2)^2} \; dx = 3 \ln|x+2| – 7 \left(-\frac{1}{x+2}\right) + C
$$
$$
\int \frac{3x-1}{(x+2)^2} \; dx = 3 \ln|x+2| + \frac{7}{x+2} + C
$$
Final Answer
$$
\boxed{3 \ln|x+2| + \frac{7}{x+2} + C}
$$
Download top-quality NCERT integration solutions by Anand Classes, perfect for JEE and CBSE preparation.
NCERT Question 15: Evaluate the integral
$$ \int \frac{1}{x^4-1} \; dx $$
Solution
$$ \int \frac{1}{x^4-1} \; dx $$
Factorize the denominator:
$$
x^4-1 = (x^2-1)(x^2+1) = (x-1)(x+1)(x^2+1)
$$
Use partial fractions:
$$
\frac{1}{x^4-1} = \frac{A}{x+1} + \frac{B}{x-1} + \frac{Cx+D}{x^2+1}
$$
Multiply through by $(x-1)(x+1)(x^2+1)$:
$$
1 = A(x-1)(x^2+1) + B(x+1)(x^2+1) + (Cx+D)(x^2-1)
$$
Expand and equate coefficients:
$$
x^3: A+B+C = 0
$$
$$
x^2: -A+B+D = 0
$$
$$
x^1: A+B-C = 0
$$
$$
\text{constant: } -A+B-D = 1
$$
Solving, we get:
$$
A = -\frac{1}{4}, \quad B = \frac{1}{4}, \quad C = 0, \quad D = -\frac{1}{2}
$$
So:
$$
\frac{1}{x^4-1} = -\frac{1}{4(x+1)} + \frac{1}{4(x-1)} – \frac{1}{2(x^2+1)}
$$
Step 1: Integrate each term
$$
\int \frac{1}{x^4-1} \; dx = \int -\frac{1}{4(x+1)} \; dx + \int \frac{1}{4(x-1)}\; dx – \int \frac{1}{2(x^2+1)} \; dx
$$
$$
\int \frac{1}{x^4-1} \; dx = -\frac{1}{4} \ln|x+1| + \frac{1}{4} \ln|x-1| – \frac{1}{2} \tan^{-1}x + C
$$
$$
\int \frac{1}{x^4-1} \; dx = \frac{1}{4} \ln\left|\frac{x-1}{x+1}\right| – \frac{1}{2} \tan^{-1}x + C
$$
Final Answer
$$
\boxed{\frac{1}{4} \ln\left|\frac{x-1}{x+1}\right| – \frac{1}{2} \tan^{-1}x + C}
$$
Download step-by-step NCERT integral solutions by Anand Classes, perfect for JEE and CBSE exam practice.
NCERT Question 16: Evaluate the integral
$$\displaystyle \int \frac{dx}{x\bigl(x^{n}+1\bigr)}$$
Solution
$$\displaystyle \int \frac{dx}{x\bigl(x^{n}+1\bigr)}$$
Let $t = x^{n}$ so $dt = n\; x^{,n-1}\;dx$ hence $x^{,n-1}\;dx = \dfrac{dt}{n}$
Rewriting the integrand by multiplying numerator and denominator by $x^{,n-1}$ gives
$$\displaystyle \int \frac{dx}{x\bigl(x^{n}+1\bigr)}=\int\frac{x^{,n-1}}{x^{n}\bigl(x^{n}+1\bigr)}dx =\int\frac{1}{x^{n}}\cdot\frac{x^{,n-1}}{x^{n}+1}dx $$
Substituting $t=x^{n}$ yields
$$\displaystyle \int \frac{dx}{x\bigl(x^{n}+1\bigr)}=\frac{1}{n}\int \frac{dt}{t(t+1)}$$
Partial fractions:
$$\displaystyle \frac{1}{t(t+1)}=\frac{1}{t}-\frac{1}{t+1}$$
So
$$\displaystyle \frac{1}{n}\int \frac{dt}{t(t+1)}=\frac{1}{n}\int\Big(\frac{1}{t}-\frac{1}{t+1}\Big)\;dt
=\frac{1}{n}\big(\ln|t|-\ln|t+1|\big)+C$$
Substitute back $t=x^{n}$:
$$\displaystyle \frac{1}{n}\int \frac{dt}{t(t+1)} =\frac{1}{n}\ln\left|\frac{x^{n}}{x^{n}+1}\right|+C$$
$$\boxed{\displaystyle \frac{1}{n}\ln\left|\frac{x^{n}}{x^{n}+1}\right|+C}$$
Download concise, exam-ready integration notes and worked solutions from Anand Classes—perfect for JEE CBSE revision and strengthening problem-solving skills.
NCERT Question 17: Evaluate the integral
$$\int \frac{\cos x}{(1-\sin x)(2-\sin x)}\ dx$$
Solution
$$\int \frac{\cos x}{(1-\sin x)(2-\sin x)}\ dx$$
Let $ \sin x = t$ so $ \cos x\ dx = dt$
$$\int \frac{\cos x}{(1-\sin x)(2-\sin x)}\ dx = \int \frac{dt}{(1-t)(2-t)}$$
Write
$$\frac{1}{(1-t)(2-t)}=\frac{A}{1-t}+\frac{B}{2-t}$$
so
$$1=A(2-t)+B(1-t)$$
Giving $A=1$ and $B=-1$
$$\int \frac{dt}{(1-t)(2-t)}=\int\left(\frac{1}{1-t}-\frac{1}{2-t}\right)\;dt = -\ln|1-t|+\ln|2-t|+C$$
Hence,
$$\int \frac{dt}{(1-t)(2-t)} = \ln\left|\frac{2-t}{1-t}\right| + C $$
Substitute back $t=\sin x$:
$$\int \frac{\cos x}{(1-\sin x)(2-\sin x)}\ dx= \ln\left|\frac{2-\sin x}{1-\sin x}\right| + C$$
Final Answer :
$$\boxed{\ln\left|\frac{2-\sin x}{1-\sin x}\right| + C}$$
Download concise exam-ready notes and worked solutions from Anand Classes perfect for JEE CBSE and competitive exam preparation.
NCERT Question 18 : Evaluate the Integral
$$
\int \frac{(x^{2}+1)(x^{2}+2)}{(x^{2}+3)(x^{2}+4)} \; dx
$$
Solution
$$
\int \frac{(x^{2}+1)(x^{2}+2)}{(x^{2}+3)(x^{2}+4)} \; dx
$$
First expand the numerator:
$$
(x^{2}+1)(x^{2}+2)=x^{4}+3x^{2}+2
$$
Expand the denominator:
$$
(x^{2}+3)(x^{2}+4)=x^{4}+7x^{2}+12
$$
Convert into “1 – something” form
Because numerator and denominator have the same degree, try writing:
$$
\frac{x^{4}+3x^{2}+2}{x^{4}+7x^{2}+12}=1-\frac{\text{something}}{(x^{2}+3)(x^{2}+4)}
$$
Compute the “something”:
$$
(x^{4}+7x^{2}+12)-(x^{4}+3x^{2}+2)=4x^{2}+10
$$
Hence:
$$
\frac{(x^{2}+1)(x^{2}+2)}{(x^{2}+3)(x^{2}+4)}
=1-\frac{4x^{2}+10}{(x^{2}+3)(x^{2}+4)}
$$
Write the rational expression as:
$$
\frac{x^{4}+3x^{2}+2}{x^{4}+7x^{2}+12}
=1-\frac{4x^{2}+10}{(x^{2}+3)(x^{2}+4)}
$$
Now decompose:
$$
\frac{4x^{2}+10}{(x^{2}+3)(x^{2}+4)}
=\frac{Ax+B}{x^{2}+3}+\frac{Cx+D}{x^{2}+4}
$$
Multiply both sides by $(x^{2}+3)(x^{2}+4)$:
$$
4x^{2}+10=(Ax+B)(x^{2}+4)+(Cx+D)(x^{2}+3)
$$
Expand:
$$
4x^{2}+10=(A+C)x^{3}+(B+D)x^{2}+(4A+3C)x+(4B+3D)
$$
Equating coefficients:
$$
A+C=0
$$
$$
B+D=4
$$
$$
4A+3C=0
$$
$$
4B+3D=10
$$
Solving:
$$
A=0,; B=-2,; C=0,; D=6
$$
Thus:
$$
\frac{4x^{2}+10}{(x^{2}+3)(x^{2}+4)}
=-\frac{2}{x^{2}+3}+\frac{6}{x^{2}+4}
$$
So the integrand becomes:
$$1-\frac{4x^{2}+10}{(x^{2}+3)(x^{2}+4)} = 1+\frac{2}{x^{2}+3}-\frac{6}{x^{2}+4}$$
Now integrate term-by-term:
$$
\int 1 \; dx = x
$$
$$
\int \frac{2}{x^{2}+3} \; dx
= \frac{2}{\sqrt{3}} \tan^{-1}\left( \frac{x}{\sqrt{3}} \right)
$$
$$
\int \frac{6}{x^{2}+4} \; dx
= 3 \tan^{-1}\left( \frac{x}{2} \right)
$$
Hence,
$$ \int \frac{(x^{2}+1)(x^{2}+2)}{(x^{2}+3)(x^{2}+4)} \; dx = x + \frac{2}{\sqrt{3}}\tan^{-1}\left(\frac{x}{\sqrt{3}}\right)-3 \tan^{-1}\left(\frac{x}{2}\right) + C $$
Final Answer
$$\boxed{x + \frac{2}{\sqrt{3}}\tan^{-1}\left(\frac{x}{\sqrt{3}}\right)-3 \tan^{-1}\left(\frac{x}{2}\right) + C}$$
Get concise exam-focused notes and worked integrals from Anand Classes ideal for JEE CBSE and competitive exam revision.
NCERT Question 19: Evaluate the integral
$$\int \frac{2x}{(x^{2}+1)(x^{2}+3)}\ dx $$
Solution
$$\int \frac{2x}{(x^{2}+1)(x^{2}+3)}\ dx $$
Let $t = x^{2}$ so $dt = 2x\ dx$.
$$
\int \frac{2x}{(x^{2}+1)(x^{2}+3)}\ dx
= \int \frac{dt}{(t+1)(t+3)}
$$
Decompose into partial fractions:
$$
\frac{1}{(t+1)(t+3)}=\frac{A}{t+1}+\frac{B}{t+3}
$$
Solving $1=A(t+3)+B(t+1)$ gives $A=\tfrac{1}{2}$ and $B=-\tfrac{1}{2}$. Hence
$$
\int \frac{dt}{(t+1)(t+3)}
= \int\left(\frac{1}{2(t+1)}-\frac{1}{2(t+3)}\right)dt
$$
$$
\int\left(\frac{1}{2(t+1)}-\frac{1}{2(t+3)}\right)dt = \frac{1}{2}\ln|t+1|-\frac{1}{2}\ln|t+3|+C
$$
$$
\int \frac{dt}{(t+1)(t+3)}
= \frac{1}{2}\ln\left|\frac{t+1}{t+3}\right|+C
$$
Substitute back $t=x^{2}$:
$$\int \frac{2x}{(x^{2}+1)(x^{2}+3)}\ dx = \frac{1}{2}\ln\left|\frac{x^{2}+1}{x^{2}+3}\right|+C $$
Final Answer
$$
\boxed{\frac{1}{2}\ln\left|\frac{x^{2}+1}{x^{2}+3}\right|+C}
$$
Find clear, step-by-step worked solutions and concise revision notes from Anand Classes—ideal for JEE, CBSE, and competitive exam preparation.
NCERT Question 20: Evaluate the integral
$$ \int \frac{1}{x\bigl(x^{4}-1\bigr)}\ dx $$
Solution
$$ \int \frac{1}{x\bigl(x^{4}-1\bigr)}\ dx $$
Multiply numerator and denominator by $x^{3}$ and substitute $t=x^{4}$:
$$
\int \frac{1}{x\bigl(x^{4}-1\bigr)}dx=\int \frac{x^{3}}{x^{4}\bigl(x^{4}-1\bigr)}dx
$$
Let $t=x^{4}$ so $dt=4x^{3}\;dx$ hence $x^{3}\;dx=\dfrac{dt}{4}$. Therefore
$$
\int \frac{1}{x\bigl(x^{4}-1\bigr)}\ dx
= \int \frac{x^{3}}{x^{4}\bigl(x^{4}-1\bigr)}\ dx
= \frac{1}{4}\int \frac{dt}{t(t-1)}
$$
Decompose the integrand:
$$
\frac{1}{t(t-1)}=\frac{A}{t}+\frac{B}{t-1}
$$
Solving $1=A(t-1)+Bt$ gives $A=-1,;B=1$, so
$$
\frac{1}{t(t-1)}=-\frac{1}{t}+\frac{1}{t-1}.
$$
Integrate:
$$
\frac{1}{4}\int\left(-\frac{1}{t}+\frac{1}{t-1}\right)dt
=\frac{1}{4}\big(-\ln|t|+\ln|t-1|\big)+C
=\frac{1}{4}\ln\left|\frac{t-1}{t}\right|+C
$$
Substitute back $t=x^{4}$:
$$ \int \frac{1}{x\bigl(x^{4}-1\bigr)}\ dx = \frac{1}{4}\ln\left|\frac{x^{4}-1}{x^{4}}\right|+C $$
Final Answer
$$
\boxed{\displaystyle \frac{1}{4}\ln\left|\frac{x^{4}-1}{x^{4}}\right|+C}
$$
Download concise worked solutions and exam-ready notes from Anand Classes—perfect for JEE CBSE and competitive exam revision.
NCERT Question 21: Evaluate the integral
$$\int \frac{1}{e^{x}-1}\ dx$$
Solution
$$\int \frac{1}{e^{x}-1}\ dx$$
Let $t = e^{x}$ so $dt = e^{x}\;dx = t\;dx$ hence $dx = \dfrac{dt}{t}$.
$$\int \frac{1}{e^{x}-1}\ dx = \int \frac{1}{t-1}\cdot\frac{dt}{t} = \int \frac{1}{t(t-1)}\ dt$$
Decompose into partial fractions:
$$\frac{1}{t(t-1)} = -\frac{1}{t} + \frac{1}{t-1}$$
Integrate:
$$\int\left(-\frac{1}{t}+\frac{1}{t-1}\right)\;dt
= -\ln|t| + \ln|t-1| + C
= \ln\left|\frac{t-1}{t}\right| + C$$
Substitute back $t=e^{x}$:
$$\int \frac{1}{e^{x}-1}\ dx = \ln\left|\frac{e^{x}-1}{e^{x}}\right| + C$$
Final Answer
$$\boxed{\ln\left|\frac{e^{x}-1}{e^{x}}\right| + C}
\quad\text{(equivalently }\boxed{\ln!\big|1-e^{-x}\big| + C}\text{)}$$
Boost your exam preparation with clear worked solutions and concise revision notes from Anand Classes—perfect for JEE CBSE and competitive exam practice.
NCERT Question 22: Choose the correct answer by evaluate the integral
$$\int \frac{x}{(x-1)(x-2)}\ dx$$
Options
(A) $\ln\left|\dfrac{(x-1)^{2}}{x-2}\right| + C$
(B) $\ln\left|\dfrac{(x-2)^{2}}{x-1}\right| + C$
(C) $\ln\left|\dfrac{x-1}{x-2}\right|^{2} + C$
(D) $\ln\left|(x-1)(x-2)\right| + C$
Solution
$$\int \frac{x}{(x-1)(x-2)}\ dx$$
Decompose into partial fractions:
$$\frac{x}{(x-1)(x-2)}=\frac{A}{x-1}+\frac{B}{x-2}$$
Multiply through:
$$x=A(x-2)+B(x-1)=(A+B)x+(-2A-B)$$
Equate coefficients:
$$A+B=1$$
$$-2A-B=0$$
Solve the system:
From $-2A-B=0$ we get $B=-2A$. Substitute into $A+B=1$:
$$A-2A=1\Rightarrow A=-1$$
$$B=-2A=2$$
So
$$\frac{x}{(x-1)(x-2)}=-\frac{1}{x-1}+\frac{2}{x-2}$$
Integrate termwise:
$$\int \frac{x}{(x-1)(x-2)}\ dx
=-\int \frac{1}{x-1}\ dx + 2\int \frac{1}{x-2}\ dx$$
$$-\int \frac{1}{x-1}\ dx + 2\int \frac{1}{x-2}\ dx =-\ln|x-1| + 2\ln|x-2| + C $$
$$ \int \frac{x}{(x-1)(x-2)}\ dx=\ln\left|\frac{(x-2)^{2}}{x-1}\right| + C$$
Correct option: (B)
$$\boxed{\ln\left|\dfrac{(x-2)^{2}}{x-1}\right| + C}$$
Find concise, exam-ready worked solutions and revision notes from Anand Classes—perfect for JEE CBSE and competitive exam practice.
NCERT Question 23: Choose the correct answer by evaluate the integral
$$\int \frac{dx}{x(x^{2}+1)}$$
Options
(A) $\displaystyle \ln|x|-\tfrac{1}{2}\ln!\big(x^{2}+1\big)+C$
(B) $\displaystyle \ln|x|+\tfrac{1}{2}\ln!\big(x^{2}+1\big)+C$
(C) $\displaystyle -\ln|x|+\tfrac{1}{2}\ln!\big(x^{2}+1\big)+C$
(D) $\displaystyle \tfrac{1}{2}\ln|x|+\ln!\big(x^{2}+1\big)+C$
Solution
$$\int \frac{dx}{x(x^{2}+1)}$$
Decompose into partial fractions:
$$
\frac{1}{x(x^{2}+1)}=\frac{A}{x}+\frac{Bx+C}{x^{2}+1}
$$
Multiply both sides by $x(x^{2}+1)$ and compare coefficients:
$$
1 = A(x^{2}+1)+(Bx+C)x = (A+B)x^{2}+Cx+A
$$
Equating coefficients gives
$$
A+B=0,\quad C=0,\quad A=1
$$
So
$$
A=1, \quad B=-1, \quad C=0
$$
Thus
$$
\frac{1}{x(x^{2}+1)}=\frac{1}{x}-\frac{x}{x^{2}+1}
$$
Integrate termwise:
$$
\int \frac{dx}{x(x^{2}+1)}=\int \frac{1}{x}\;dx \;-\; \int \frac{x}{x^{2}+1}\;dx
$$
For the second integral let $u=x^{2}+1$ so $du=2x\;dx$:
$$
\int \frac{x}{x^{2}+1}\;dx=\frac{1}{2}\ln\big(x^{2}+1\big)
$$
Therefore
$$
\int \frac{dx}{x(x^{2}+1)}=\ln|x|-\frac{1}{2}\ln\big(x^{2}+1\big)+C
$$
Correct option: (A)
$$
\boxed{\ln|x|-\dfrac{1}{2}\ln\big(x^{2}+1\big)+C}
$$
Find concise, exam-ready integral solutions and revision notes from Anand Classes—ideal for JEE, CBSE, and competitive exam preparation.

