Differential Equations NCERT Solutions Exercise 9.3 Class 12 Math Chapter-9 PDF Free Download (Set-1)

⭐⭐⭐⭐⭐ (5/5 from 53851 reviews)

NCERT Question.1 : Find the general solution of differential equation :
$$\frac{dy}{dx}=\frac{1-\cos x}{1+\cos x}$$

Solution:
Using Equation : $cos x = 1 -2 sin^2(x/2) = 2 cos^2(x/2) – 1$

$$\frac{dy}{dx}=\frac{2sin^2(x/2)}{2cos^2(x/2)}$$
The given equation can be rewritten as:

$$\frac{dy}{dx}=\tan^2\frac{x}{2}$$

Using the identity $\tan^2 u=\sec^2 u-1$, we have

$$\frac{dy}{dx}=\sec^2\frac{x}{2}-1$$

So

$$dy=\bigg(\sec^2\frac{x}{2}-1\bigg)dx$$

On integrating both sides, we get

$$\int dy=\int\bigg(\sec^2\frac{x}{2}-1\bigg)dx$$

$$y=\int\sec^2\dfrac{x}{2}dx-\int 1dx$$

Since $\int\sec^2\dfrac{x}{2}dx=2\tan\dfrac{x}{2}$, it follows that

$$y=2\tan\frac{x}{2}-x+C$$

Final Answer:

$$\boxed{y=2\tan\frac{x}{2}-x+C}$$

Download notes by Anand Classes — perfect for JEE and CBSE, top-quality study material to help you revise trigonometric identities and differential equations.


NCERT Question.2 : Find the general solution of differential equation :
$$\frac{dy}{dx}=\sqrt{4-y^2}$$

Solution :
Separate variables:

$$\frac{dy}{\sqrt{4-y^2}}=dx.$$

Integrate both sides:

$$\int\frac{dy}{\sqrt{4-y^2}}=\int dx.$$

Using $\displaystyle\int\frac{dy}{\sqrt{a^2-y^2}}=\sin^{-1}\frac{y}{a}+C$ with $a=2$, we get

$$\sin^{-1}\frac{y}{2}=x+C.$$

Solve for $y$:

$$y=2\sin(x+C).$$

Final Answer

$$\boxed{y=2\sin(x+C)}$$

Download notes by Anand Classes — perfect for JEE and CBSE practice, a concise resource for mastering differential equations.


NCERT Question.3 : Find the general solution of differential equation :
$$\frac{dy}{dx}+y=1$$

Solution:
Rewrite the equation as

$$\frac{dy}{dx}=1-y.$$

Separate variables:

$$\frac{dy}{1-y}=dx.$$

Integrate both sides:

$$\int\frac{dy}{1-y}=\int dx.$$

Using the substitution $u=1-y$ (so $du=-dy$), the left integral gives $-\ln|1-y|$. Thus

$$-\ln|1-y|=x+C.$$

Rearrange (replace $-C$ by a new constant $C$):

$$\ln|1-y|=-x+C\quad\Longrightarrow\quad |1-y|=Ce^{-x}.$$

Absorbing the sign into the constant $C$ (allowing $C$ to be any nonzero real constant) yields

$$1-y=Ce^{-x}.$$

Therefore the general solution is

$$\boxed{y=1-Ce^{-x}}$$

where $C$ is an arbitrary constant.

Get complete revision notes from Anand Classes — ideal for JEE & CBSE prep and concise practice material for first-order differential equations.


NCERT Question.4 : Find the general solution of differential equation :
$$\sec^2 x\tan ydx+\sec^2 y\tan xdy=0$$

Solution:
Divide both sides by $\tan x\tan y$ (assuming $\tan x\neq0,\ \tan y\neq0$):

$$\frac{\sec^2 x\tan y}{\tan x\tan y}dx+\frac{\sec^2 y\tan x}{\tan x\tan y}dy=0$$

which simplifies to

$$\frac{\sec^2 x}{\tan x}dx+\frac{\sec^2 y}{\tan y}dy=0.$$

Set $u=\tan x$ so $du=\sec^2 xdx$, and $v=\tan y$ so $dv=\sec^2 ydy$. The equation becomes

$$\frac{du}{u}+\frac{dv}{v}=0.$$

Integrate both sides:

$$\int\frac{du}{u}+\int\frac{dv}{v}=0\quad\Longrightarrow\quad \ln|u|+\ln|v|=C.$$

Substitute back $u=\tan x$, $v=\tan y$:

$$\ln\big|\tan x\big|+\ln\big|\tan y\big|=C
\quad\Longrightarrow\quad \ln\big|\tan x\tan y\big|=C.$$

Exponentiating and absorbing the sign into the constant gives the general implicit solution

Final Answer:

$$\boxed{\tan x\tan y=C}$$

where $C$ is an arbitrary constant.

Download notes by Anand Classes — perfect for JEE and CBSE practice, a concise resource for mastering trigonometric differential equations.


NCERT Question.5 : Find the general solution of differential equation :
$$(e^{x}+e^{-x})dy-(e^{x}-e^{-x})dx=0$$

Solution:
Rewrite the equation as

$$ (e^{x}+e^{-x})dy=(e^{x}-e^{-x})dx $$

Rewrite as
$$\frac{dy}{dx}=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}.$$

Notice that the denominator $e^{x}+e^{-x}$ has derivative
$$\frac{d}{dx}\big(e^{x}+e^{-x}\big)=e^{x}-e^{-x},$$
which is exactly the numerator. Hence the integrand is the derivative of a logarithm:

$$\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}=\frac{d}{dx}\ln\big|e^{x}+e^{-x}\big|.$$

Integrate both sides:
$$y=\int\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}dx=\ln\big|e^{x}+e^{-x}\big|+C.$$

Final Answer

$$\boxed{y=\ln\big(e^{x}+e^{-x}\big)+C}$$

(Equivalently $y=\ln\big(2\cosh x\big)+C$, but the form above avoids naming hyperbolic functions.)

Get concise revision notes from Anand Classes — perfect for JEE and CBSE practice and reliable review of first-order differential equations.


NCERT Question.6 : Find the general solution of differential equation :
$$\frac{dy}{dx}=(1+x^2)(1+y^2)$$

Solution :
Rewriting the given equation:

$$\frac{dy}{1+y^2}=(1+x^2),dx$$

Integrate both sides:

$$\int\frac{dy}{1+y^2}=\int(1+x^2)dx$$

Now,
$$\int\frac{dy}{1+y^2}=\tan^{-1}y$$
and
$$\int(1+x^2)dx=x+\frac{x^3}{3}+C$$

Therefore,

$$\tan^{-1}y=x+\frac{x^3}{3}+C.$$

Final Answer

$$\boxed{\tan^{-1}y=x+\frac{x^3}{3}+C}$$

Download detailed step-by-step notes from Anand Classes — ideal for JEE and CBSE students to master integration and differential equations.


NCERT Question.7 : Find the general solution of differential equation :
$$y\ln ydx – xdy = 0$$

Solution :
Rewrite the equation as
$$y\ln ydx = xdy$$
and separate variables:
$$\frac{dy}{y\ln y}=\frac{dx}{x}.$$

Set $u=\ln y$, so $du=\dfrac{dy}{y}$. The left integral becomes
$$\int\frac{dy}{y\ln y}=\int\frac{du}{u}=\ln\big|u\big|=\ln\big|\ln y\big|.$$

Integrating both sides gives
$$\ln\big|\ln y\big|=\ln|x|+C.$$

Exponentiate (set $K=e^{C}>0$) to get
$$\big|\ln y\big|=K|x|.$$
Absorbing sign and absolute-values into an arbitrary constant $C$ (which may be any real number) yields the general relation
$$\ln y = Cx.$$

Solving for $y$,
$$\boxed{y=e^{Cx}}$$
where $C$ is an arbitrary constant.
(Notice the constant solution $y=1$ corresponds to $C=0$ and is included.)

Download concise notes by Anand Classes — perfect for JEE and CBSE practice and a reliable quick-review for first-order differential equations.


NCERT Question.8 : Find the general solution of differential equation :
$$x^{5}\frac{dy}{dx}=-y^{5}$$

Solution:
Rewrite as a separable equation:
$$\frac{dy}{dx}=-\frac{y^{5}}{x^{5}} \quad\Longrightarrow\quad \frac{dy}{y^{5}}=-\frac{dx}{x^{5}}.$$

Integrate both sides:
$$\int y^{-5}dy=\int -x^{-5}dx$$

Compute the integrals:
$$\frac{y^{-4}}{-4}=\frac{x^{-4}}{4}+C$$

Multiply by $4$ and rearrange (absorb constants) to obtain the implicit general solution:
$$x^{-4}+y^{-4}=C$$

Final Answer:

$$\boxed{x^{-4}+y^{-4}=C}$$

Download practice sheets by Anand Classes — perfect for JEE and CBSE revision, concise and reliable differential-equation practice material.


NCERT Question.9 : Find the general solution of differential equation :
$$\frac{dy}{dx}=\sin^{-1}x$$

Solution :
Integrate both sides with respect to $x$:

$$y=\int \sin^{-1}xdx$$

Use integration by parts with $u=\sin^{-1}x, dv=dx$. Then $du=\dfrac{dx}{\sqrt{1-x^{2}}}$ and $v=x$. Thus

$$
y = x\sin^{-1}x-\int x\cdot\frac{dx}{\sqrt{1-x^{2}}}
= x\sin^{-1}x-\int\frac{xdx}{\sqrt{1-x^{2}}}.
$$

Substitute $t=1-x^{2}$ so $dt=-2xdx$, hence $xdx=-\tfrac{1}{2}dt$. Therefore

$$
\int\frac{xdx}{\sqrt{1-x^{2}}}=\int\frac{-\tfrac{1}{2}dt}{\sqrt{t}}=-\sqrt{t}=-\sqrt{1-x^{2}}.
$$

Putting this back gives

$$
y=x\sin^{-1}x-(-\sqrt{1-x^{2}})=x\sin^{-1}x+\sqrt{1-x^{2}}+C.
$$

Final Answer

$$\boxed{y=x\sin^{-1}x+\sqrt{1-x^{2}}+C}$$

Download concise notes by Anand Classes — perfect for JEE and CBSE practice, a clear revision resource for integration and differential equations.


NCERT Question.10 : Find the general solution of differential equation :
$$e^{x}\tan ydx+(1-e^{x})\sec^{2}ydy=0$$

Solution :
Rewrite and group terms with $dy$ on one side:
$$(1-e^{x})\sec^{2}ydy=-e^{x}\tan ydx.$$

Use the substitution $u=\tan y$, so $du=\sec^{2}ydy$. The equation becomes
$$(1-e^{x})du=-e^{x}udx.$$

Separate variables:
$$\frac{du}{u}=-\frac{e^{x}}{1-e^{x}}dx.$$

Integrate both sides. For the right side use $t=1-e^{x}$ so $dt=-e^{x}dx$:
$$\int\frac{du}{u}=-\int\frac{e^{x}}{1-e^{x}}dx
\quad\Longrightarrow\quad \ln|u|=\ln|1-e^{x}|+C.$$

Substitute back $u=\tan y$ and exponentiate:
$$\tan y=C(1-e^{x}),\qquad C\ \text{an arbitrary constant.}$$

Final Answer

$$\boxed{\tan y = C\big(1-e^{x}\big)}$$

Download clear revision notes from Anand Classes — perfect for JEE and CBSE practice, concise and reliable material for first-order differential equations.


NCERT Question.11 : Find a particular solution satisfying the given condition:
$$(x^{3}+x^{2}+x+1)\frac{dy}{dx}=2x^{2}+x, $$
$y = 1$ when $x = 0$

Solution :

Factor the denominator:

$$x^{3}+x^{2}+x+1=(x+1)(x^{2}+1).$$

So
$$\frac{dy}{dx}=\frac{2x^{2}+x}{(x+1)(x^{2}+1)}.$$

Perform partial fractions:
$$\frac{2x^{2}+x}{(x+1)(x^{2}+1)}=\frac{A}{x+1}+\frac{Bx+C}{x^{2}+1}.$$
Multiplying through and comparing coefficients gives
$$2x^{2}+x=(A+B)x^{2}+(B+C)x+(A+C).$$
Equating coefficients:
$$
A+B=2, B+C=1, A+C=0
$$
Solving yields $A=\tfrac{1}{2},B=\tfrac{3}{2},C=-\tfrac{1}{2}$.

Thus
$$\frac{dy}{dx}=\frac{1/2}{x+1}+\frac{\tfrac{3}{2}x-\tfrac{1}{2}}{x^{2}+1}.$$

Separate and integrate:
$$y=\int\frac{1}{2}\frac{dx}{x+1}+\int\frac{\tfrac{3}{2}x}{x^{2}+1},dx+\int\frac{-\tfrac{1}{2}}{x^{2}+1},dx + C.$$

Evaluate the integrals:
$$
\int\frac{1}{2}\frac{dx}{x+1} = \tfrac{1}{2}\ln|x+1| $$

$$\int\frac{\tfrac{3}{2}x}{x^{2}+1}dx = \tfrac{3}{4}\ln\big(x^{2}+1\big) $$

$$\int\frac{-\tfrac{1}{2}}{x^{2}+1}dx = -\tfrac{1}{2}\tan^{-1}x.
$$

So the general solution is
$$y=\tfrac{1}{2}\ln|x+1|+\tfrac{3}{4}\ln\big(x^{2}+1\big)-\tfrac{1}{2}\tan^{-1}x + C.$$

Use the condition $y(0)=1$:
$$1=\tfrac{1}{2}\ln 1+\tfrac{3}{4}\ln 1-\tfrac{1}{2}\tan^{-1}0+C \Longrightarrow C=1.$$

Final (particular) solution

$$\boxed{y=\tfrac{1}{2}\ln(x+1)+\tfrac{3}{4}\ln\big(x^{2}+1\big)-\tfrac{1}{2}\tan^{-1}x+1}$$

Download concise revision notes by Anand Classes — perfect for JEE and CBSE practice and ideal for quick mastery of partial fractions and integration techniques.


NCERT Question.12 : Find a particular solution satisfying the given condition:
$$x(x^{2}-1)\frac{dy}{dx}=1,\qquad y(2)=0$$

Solution :
Rearrange:
$$\frac{dy}{dx}=\frac{1}{x(x^{2}-1)}=\frac{1}{x(x-1)(x+1)}.$$

Partial fraction decomposition: find $A,B,C$ with
$$\frac{1}{x(x-1)(x+1)}=\frac{A}{x}+\frac{B}{x-1}+\frac{C}{x+1}.$$
Putting $x=0,1,-1$ gives
$$A=-1,\qquad B=\tfrac{1}{2},\qquad C=\tfrac{1}{2}.$$

Thus
$$\frac{dy}{dx}=-\frac{1}{x}+\frac{1}{2}\cdot\frac{1}{x-1}+\frac{1}{2}\cdot\frac{1}{x+1}.$$

Integrate:
$$
y=\int\left(-\frac{1}{x}+\frac{1}{2}\frac{1}{x-1}+\frac{1}{2}\frac{1}{x+1}\right)dx + C $$

$$y =-\ln|x|+\tfrac{1}{2}\ln|x-1|+\tfrac{1}{2}\ln|x+1|+C$$

$$y =\tfrac{1}{2}\ln\left|\frac{x^{2}-1}{x^{2}}\right|+C$$

Use $y(2)=0$:
$$0=\tfrac{1}{2}\ln\left(\frac{2^{2}-1}{2^{2}}\right)+C=\tfrac{1}{2}\ln\left(\frac{3}{4}\right)+C,$$
so
$$C=-\tfrac{1}{2}\ln\left(\frac{3}{4}\right)=\tfrac{1}{2}\ln\left(\frac{4}{3}\right).$$

Particular solution

$$\boxed{y=\tfrac{1}{2}\ln\left(\frac{x^{2}-1}{x^{2}}\right)+\tfrac{1}{2}\ln\left(\frac{4}{3}\right)
=\tfrac{1}{2}\ln\left(\frac{4(x^{2}-1)}{3x^{2}}\right)}$$

Download concise revision notes by Anand Classes — perfect for JEE and CBSE practice, a clear and compact review of partial fractions and first-order differential equations.


Summary

Chapter 9 of the Class 12 NCERT Mathematics Part II textbook, “Differential Equations,” focuses on techniques for solving differential equations. Exercise 9.3 provides practice problems on applying methods for solving both first-order and higher-order differential equations. Solutions are detailed to help students understand and effectively apply these techniques to various problems.

⬅️ NCERT Solutions Exercise 9.3 (Set-2) NCERT Solutions Exercise 9.2 ➡️

📚 Buy Study Material & Join Our Coaching

For premium study materials specially designed for JEE, NEET, NDA, CDS, AFCAT, SSC Exams, visit our official study material portal:
👉 https://publishers.anandclasses.co.in/

For JEE/NEET Notes : Visit https://anandclasses.in/

For NDA Notes : Visit https://nda.anandclasses.in/

For SSC Notes : Visit https://ssc.anandclasses.in/

For CDS, AFCAT Notes : Visit https://cds-afcat.anandclasses.in/

To enroll in our offline or online coaching programs, visit our coaching center website:
👉 https://anandclasses.co.in/

📞 Call us directly at: +91-94631-38669

💬 WhatsApp Us Instantly

Need quick assistance or want to inquire about classes and materials?

📲 Click below to chat instantly on WhatsApp:
👉 Chat on WhatsApp

🎥 Watch Video Lectures

Get access to high-quality video lessons, concept explainers, and revision tips by subscribing to our official YouTube channel:
👉 Neeraj Anand Classes – YouTube Channel

RELATED TOPICS