Integrals NCERT Solutions Miscellaneous Exercise Chapter-7 Class 12 Math Notes PDF Free Download (Set-2)

โญโญโญโญโญ (5/5 from 73912 reviews)

NCERT Question.11 : Evaluate the integral
$$\int \frac{1}{\cos(x+a)\cos(x+b)}\;dx$$

Solution

$$\int \frac{1}{\cos(x+a)\cos(x+b)}\;dx$$

Use the identity
$$
\tan u-\tan v=\frac{\sin(u-v)}{\cos u\cos v}.
$$
With $u=x+a$ and $v=x+b$ we get
$$
\frac{1}{\cos(x+a)\cos(x+b)}
=\frac{\tan(x+a)-\tan(x+b)}{\sin(a-b)}.
$$

Hence
$$
\int \frac{1}{\cos(x+a)\cos(x+b)}\;dx
=\frac{1}{\sin(a-b)}\int\bigl(\tan(x+a)-\tan(x+b)\bigr)\;dx
$$

Integrate termwise using $\displaystyle\int \tan u\;du=-\ln\lvert\cos u\rvert$
$$
\int \frac{1}{\cos(x+a)\cos(x+b)}\;dx = \\[1em]
=\frac{1}{\sin(a-b)}\Bigl[-\ln\lvert\cos(x+a)\rvert+\ln\lvert\cos(x+b)\rvert\Bigr]+C $$

$$\int \frac{1}{\cos(x+a)\cos(x+b)}\;dx=\frac{1}{\sin(a-b)}\ln\left\lvert\frac{\cos(x+b)}{\cos(x+a)}\right\rvert +C
$$

Final Result

$$
\boxed{\;\displaystyle \frac{1}{\sin(a-b)}\ln\left\lvert\frac{\cos(x+b)}{\cos(x+a)}\right\rvert +C\;}
$$

Download concise, exam-ready notes by Anand Classes โ€” perfect for JEE and CBSE students seeking top-quality worked solutions and clear step-by-step explanations.


NCERT Question.12 : Evaluate the integral
$$\int \frac{x^{3}}{\sqrt{1-x^{8}}}\;dx$$

Solution

$$\int \frac{x^{3}}{\sqrt{1-x^{8}}}\;dx$$

Let
$$t=x^{4}\quad\Rightarrow\quad dt=4x^{3}\;dx\quad\Rightarrow\quad x^{3}\;dx=\dfrac{1}{4}\;dt$$

Substitute:
$$
\int \frac{x^{3}}{\sqrt{1-x^{8}}}\;dx
=\frac{1}{4}\int \frac{1}{\sqrt{1-t^{2}}}\;dt
=\frac{1}{4}\sin^{-1}t + C
$$

Back-substitute $t=x^{4}$ :
$$
\int \frac{x^{3}}{\sqrt{1-x^{8}}}\;dx
=\frac{1}{4}\sin^{-1}\bigl(x^{4}\bigr)+C.
$$

Final Result

$$
\boxed{\;\displaystyle \dfrac{1}{4}\sin^{-1}\bigl(x^{4}\bigr)+C\;}
$$

Download clear, exam-ready integral solutions by Anand Classes โ€” perfect for JEE and CBSE revision with concise, step-by-step explanations.


NCERT Question.13 : Evaluate the integral
$$\int \frac{e^{x}}{(1+e^{x})(2+e^{x})}\;dx$$

Solution

$$\int \frac{e^{x}}{(1+e^{x})(2+e^{x})}\;dx$$

Let $t=e^{x}$ so $dt=e^{x}\;dx$. The integral becomes
$$
\int \frac{dt}{(1+t)(2+t)}.
$$

Use partial fractions:
$$
\frac{1}{(1+t)(2+t)}=\frac{1}{t+1}-\frac{1}{t+2},
$$
since $\dfrac{1}{t+1}-\dfrac{1}{t+2}=\dfrac{(t+2)-(t+1)}{(t+1)(t+2)}=\dfrac{1}{(t+1)(t+2)}$.

Integrate termwise:
$$
\int\frac{dt}{(1+t)(2+t)}=\int\left(\frac{1}{t+1}-\frac{1}{t+2}\right)\;dt
=\ln|t+1|-\ln|t+2|+C.
$$

Substitute back $t=e^{x}$:
$$
\ln\bigl(1+e^{x}\bigr)-\ln\bigl(2+e^{x}\bigr)+C
=\ln\left|\frac{1+e^{x}}{2+e^{x}}\right|+C.
$$

Hence,

$$\int \frac{e^{x}}{(1+e^{x})(2+e^{x})}\;dx=\displaystyle \ln\left|\frac{1+e^{x}}{2+e^{x}}\right|+C$$

Final Result

$$
\boxed{\displaystyle \ln\left|\frac{1+e^{x}}{2+e^{x}}\right|+C}
$$

Download concise, exam-ready notes by Anand Classes โ€” perfect for JEE and CBSE students seeking top-quality worked solutions and clear step-by-step explanations.


NCERT Question.14 : Evaluate the integral
$$\int \frac{1}{(x^{2}+1)(x^{2}+4)}\;dx$$

Solution

$$\int \frac{1}{(x^{2}+1)(x^{2}+4)}\;dx$$

Partial fraction decomposition. Assume
$$
\frac{1}{(x^{2}+1)(x^{2}+4)}=\frac{Ax+B}{x^{2}+1}+\frac{Cx+D}{x^{2}+4}.
$$
Multiplying through and comparing coefficients gives
$$
1=(Ax+B)(x^{2}+4)+(Cx+D)(x^{2}+1).
$$
Equating coefficients yields the system
$$
\begin{cases}
A+C=0,\\
B+D=0,\\
4A+C=0,\\
4B+D=1.\end{cases}
$$
Solving gives
$$
A=0,\quad C=0,\quad B=\frac{1}{3},\quad D=-\frac{1}{3}.
$$

Thus
$$
\frac{1}{(x^{2}+1)(x^{2}+4)}
=\frac{1}{3}\cdot\frac{1}{x^{2}+1}-\frac{1}{3}\cdot\frac{1}{x^{2}+4}.
$$

Integrate termwise.

$$
\int \frac{1}{(x^{2}+1)(x^{2}+4)}\;dx
=\frac{1}{3}\int\frac{1}{x^{2}+1}\;dx-\frac{1}{3}\int\frac{1}{x^{2}+4}\;dx $$

$$\int \frac{1}{(x^{2}+1)(x^{2}+4)}\;dx=\frac{1}{3}\tan^{-1}x-\frac{1}{3}\cdot\frac{1}{2}\tan^{-1}\bigl(\frac{x}{2}\bigr)+C$$

$$\int \frac{1}{(x^{2}+1)(x^{2}+4)}\;dx=\frac{1}{3}\tan^{-1}x-\frac{1}{6}\tan^{-1}\bigl(\frac{x}{2}\bigr)+C$$

Final Result

$$
\boxed{\displaystyle \frac{1}{3}\tan^{-1}x-\frac{1}{6}\tan^{-1}\bigl(\frac{x}{2}\bigr)+C}
$$

Download concise, exam-ready notes by Anand Classes โ€” perfect for JEE and CBSE students seeking top-quality worked solutions and clear step-by-step explanations.


NCERT Question.15 : Evaluate the integral
$$\int \cos^{3}x\;e^{\log\sin x}\;dx$$

Solution

$$\int \cos^{3}x\;e^{\log\sin x}\;dx$$

Note that $e^{\log\sin x}=\sin x$ (where $\sin x>0$), so the integrand simplifies to $\cos^{3}x\sin x$. Thus

$$
\int \cos^{3}x\;e^{\log\sin x}\;dx=\int \cos^{3}x\sin x\;dx$$

Put $t=\cos x\Rightarrow dt=-\sin x\;dx$, hence $\sin x\;dx=-dt$. Therefore

$$
\int \cos^{3}x\sin x\;dx=-\int t^{3}\;dt=-\frac{t^{4}}{4}+C$$

Substituting back $t=\cos x$ gives

$$
\int \cos^{3}x\sin x\;dx=-\frac{\cos^{4}x}{4}+C
$$

Final Result

$$
\boxed{\;\displaystyle -\frac{\cos^{4}x}{4}+C\;}
$$

Download concise, exam-ready notes by Anand Classes โ€” perfect for JEE and CBSE students seeking top-quality study material and clear worked solutions.


NCERT Question.16 : Evaluate the integral
$$\int e^{3\log x}\;(x^{4}+1)^{-1}\;dx$$

Solution

$$\int e^{3\log x}\;(x^{4}+1)^{-1}\;dx$$

Since
$$
e^{3\log x}=e^{\log x^{3}}=x^{3}
$$
the integral becomes
$$
\int \frac{x^{3}}{x^{4}+1}\;dx.
$$

Let
$$
t=x^{4}+1\Rightarrow dt=4x^{3}dx\Rightarrow x^{3}dx=\frac{dt}{4}.
$$

Thus,
$$
\int \frac{x^{3}}{x^{4}+1}\;dx=\frac14\int \frac{dt}{t}=\frac14\log|t|+C
$$

Substituting back $t=x^{4}+1$ gives

$$
\int \frac{x^{3}}{x^{4}+1}\;dx=\frac14\log(x^{4}+1)+C.
$$

Final Result

$$
\boxed{\;\displaystyle \frac14\log(x^{4}+1)+C\;}
$$

Access beautifully structured calculus notes and solved examples by Anand Classes โ€” ideal for JEE and CBSE preparation with clear simplified formatted solutions.


NCERT Question.17 : Evaluate the integral
$$\int f'(ax+b)\;[f(ax+b)]^{n}\;dx$$

Solution

$$\int f'(ax+b)\;[f(ax+b)]^{n}\;dx$$

Let
$$
t=f(ax+b)\Rightarrow dt=a\;f'(ax+b)\;dx.
$$

Thus,
$$
f'(ax+b)\;dx=\frac{dt}{a}.
$$

Substitute into the integral:
$$
\int f'(ax+b)\;[f(ax+b)]^{n}\;dx
=\frac1a\int t^{n}\;dt.
$$

Integrating,
$$
\frac1a\int t^{n}\;dt=\frac1a\cdot \frac{t^{,n+1}}{n+1}+C.
$$

Substituting back $t=f(ax+b)$, we obtain
$$
\int f'(ax+b)\;[f(ax+b)]^{n}\;dx=\frac{(f(ax+b))^{,n+1}}{a(n+1)}+C
$$

Final Result

$$
\boxed{\displaystyle \frac{(f(ax+b))^{n+1}}{a(n+1)}+C}
$$

For more expertly formatted calculus notes and integral shortcuts, explore Anand Classes โ€” perfect for CBSE and JEE aspirants seeking high-quality study material.


NCERT Question.18 : Evaluate the integral
$$\int \frac{1}{\sqrt{\sin^{3}x\;\sin(x+\alpha)}}\;dx$$

Solution

$$\int \frac{1}{\sqrt{\sin^{3}x\;\sin(x+\alpha)}}\;dx$$

Write the integrand as
$$
\frac{1}{\sqrt{\sin^{3}x\;\sin(x+\alpha)}}
=\frac{1}{\sin^{3/2}x\;\sqrt{\sin(x+\alpha)}}.
$$

Observe the identity
$$
\frac{\sin(x+\alpha)}{\sin x}=\cos\alpha+\cot x\;\sin\alpha.
$$
Set
$$
u^{2}=\frac{\sin(x+\alpha)}{\sin x}=\cos\alpha+\cot x\;\sin\alpha $$

$$\qquad u=\sqrt{\frac{\sin(x+\alpha)}{\sin x}}$$

Differentiate $u^{2}$:
$$
2u\;du=\bigl(-\csc^{2}x\;\sin\alpha\bigr)\;dx
\quad\Rightarrow\quad
dx=-\frac{2u\sin^{2}x}{\sin\alpha}\;du.
$$

Express the integrand in terms of $u$. Since $\sin(x+\alpha)=u^{2}\sin x$ we have
$$
\sqrt{\sin(x+\alpha)}=u\sqrt{\sin x}
$$
so the integrand becomes
$$
\frac{1}{\sin^{3/2}x\;u\sqrt{\sin x}}
=\frac{1}{u\;\sin^{2}x}.
$$

Hence
$$
\int \frac{1}{\sqrt{\sin^{3}x\;\sin(x+\alpha)}}\;dx
=\int \frac{1}{u\sin^{2}x}\left(-\frac{2u\sin^{2}x}{\sin\alpha}\;du\right)$$

$$\int \frac{1}{\sqrt{\sin^{3}x\;\sin(x+\alpha)}}\;dx=-\frac{2}{\sin\alpha}\int du$$

$$\int \frac{1}{\sqrt{\sin^{3}x\;\sin(x+\alpha)}}\;dx=-\frac{2}{\sin\alpha}u + C$$

Substitute back $u$:

$$\int \frac{1}{\sqrt{\sin^{3}x\;\sin(x+\alpha)}}\;dx=\displaystyle -\frac{2}{\sin\alpha}\sqrt{\frac{\sin(x+\alpha)}{\sin x}}+C$$

Final Result

$$
\boxed{\displaystyle -\frac{2}{\sin\alpha}\sqrt{\frac{\sin(x+\alpha)}{\sin x}}+C}
$$

Download concise, exam-ready notes by Anand Classes โ€” perfect for JEE and CBSE students looking for clear worked solutions and top-quality study material.


NCERT Question.19 : Evaluate the integral
$$\displaystyle \int \sqrt{\frac{1-\sqrt{x}}{1+\sqrt{x}}}\;dx
$$

Solution

$$\displaystyle \int \sqrt{\frac{1-\sqrt{x}}{1+\sqrt{x}}}\;dx
$$

Put $t=\sqrt{x}$ so $x=t^{2}$ and $dx=2t\;dt$. Then
$$
\int \sqrt{\frac{1-\sqrt{x}}{1+\sqrt{x}}}\;dx
= \int 2t\sqrt{\frac{1-t}{1+t}}\;dt.
$$

Now set $t=\cos\theta$ (for $t\in[0,1]$ so $\theta\in[0,\tfrac{\pi}{2}]$). Then $dt=-\sin\theta \;d\theta$ and
$$
\sqrt{\frac{1-t}{1+t}}=\sqrt{\frac{1-\cos\theta}{1+\cos\theta}}=\tan\frac{\theta}{2}.
$$
Thus the integral becomes
$$
I = \int 2\cos\theta\;\tan\frac{\theta}{2}\;(-\sin\theta)\;d\theta
= -2\int \cos\theta\;\tan\frac{\theta}{2}\;\sin\theta\;d\theta
$$

Use $\sin\theta=2\sin\frac{\theta}{2}\cos\frac{\theta}{2}$ and $\tan\frac{\theta}{2}=\dfrac{\sin\frac{\theta}{2}}{\cos\frac{\theta}{2}}$, so
$$
\cos\theta\;\tan\frac{\theta}{2}\;\sin\theta
= \cos\theta\cdot\frac{\sin\frac{\theta}{2}}{\cos\frac{\theta}{2}}\cdot 2\sin\frac{\theta}{2}\cos\frac{\theta}{2}
=2\cos\theta\sin^{2}\frac{\theta}{2}
$$
Therefore
$$
I=-4\int \cos\theta\sin^{2}\frac{\theta}{2}\;d\theta
$$

Use $\sin^{2}\frac{\theta}{2}=\dfrac{1-\cos\theta}{2}$ to get
$$
I=-4\int \cos\theta\cdot\frac{1-\cos\theta}{2}\;d\theta
=-2\int\bigl(\cos\theta-\cos^{2}\theta\bigr)\;d\theta
$$

Integrate termwise:
$$
I =-2\sin\theta+2\int\cos^{2}\theta\;d\theta
=-2\sin\theta+2\left(\frac{\theta}{2}+\frac{\sin\theta\cos\theta}{2}\right) +C$$

$$I=\theta-2\sin\theta+\sin\theta\cos\theta +C
$$

Return to $x$. Since $t=\cos\theta=\sqrt{x}$ we have $\theta=\cos^{-1}(\sqrt{x})$, $\sin\theta=\sqrt{1-t^{2}}=\sqrt{1-x}$ and $\sin\theta\cos\theta=\sqrt{x(1-x)}$. Hence

$$I=\theta-2\sin\theta+\sin\theta\cos\theta +C=\displaystyle \cos^{-1}\bigl(\sqrt{x}\bigr)-2\sqrt{1-x}+\sqrt{x(1-x)}+C$$

Final Result

$$
\boxed{\displaystyle \cos^{-1}\bigl(\sqrt{x}\bigr)-2\sqrt{1-x}+\sqrt{x(1-x)}+C }
$$

Download concise, exam-ready notes by Anand Classes โ€” perfect for JEE and CBSE students seeking top-quality worked solutions and clear step-by-step explanations.


NCERT Question.20 : Evaluate the integral
$$\int \frac{2+\sin 2x}{1+\cos 2x}\;e^{x}\;dx$$

Solution

$$\int \frac{2+\sin 2x}{1+\cos 2x}\;e^{x}\;dx$$

Use the double-angle identities $ \sin 2x=2\sin x\cos x$ and $ \cos 2x=2\cos^{2}x-1$, so
$$
1+\cos 2x=2\cos^{2}x,\qquad
2+\sin 2x=2+2\sin x\cos x=2(1+\sin x\cos x).
$$
Hence
$$
\frac{2+\sin 2x}{1+\cos 2x}
=\frac{2(1+\sin x\cos x)}{2\cos^{2}x}
=\frac{1+\sin x\cos x}{\cos^{2}x}
=\sec^{2}x+\tan x.
$$

Therefore the integral becomes
$$\int \frac{2+\sin 2x}{1+\cos 2x}\;e^{x}\;dx=\int(\sec^{2}x+\tan x)\;e^{x}\;dx$$

Observe that $\dfrac{d}{dx}\bigl(\tan x\bigr)=\sec^{2}x$, so the integrand is $(\tan x+\dfrac{d}{dx}\bigl(\tan x\bigr))e^{x}$, which is the derivative of $e^{x}\tan x$. Thus
$$\int(\sec^{2}x+\tan x)\;e^{x}\;dx=e^{x}\tan x + C$$

Final Result

$$
\boxed{\;\displaystyle e^{x}\tan x + C\;}
$$

Download concise, exam-ready notes by Anand Classes โ€” perfect for JEE and CBSE students seeking top-quality worked solutions and clear step-by-step explanations.


NCERT Question.21 : Evaluate the integral
$$
\int \frac{\sin^{-1}x-\cos^{-1}x}{\sin^{-1}x+\cos^{-1}x}\;dx\qquad (x\in[0,1])
$$

Solution

$$\int \frac{\sin^{-1}x-\cos^{-1}x}{\sin^{-1}x+\cos^{-1}x}\;dx $$

Use the identity for $x\in[-1,1]$:
$$
\sin^{-1}x+\cos^{-1}x=\frac{\pi}{2}.
$$
Thus the integrand simplifies to
$$
\frac{\sin^{-1}x-\cos^{-1}x}{\sin^{-1}x+\cos^{-1}x}
=\frac{\sin^{-1}x-\bigl(\tfrac{\pi}{2}-\sin^{-1}x\bigr)}{\tfrac{\pi}{2}}$$

$$\frac{\sin^{-1}x-\cos^{-1}x}{\sin^{-1}x+\cos^{-1}x}=\frac{2\sin^{-1}x-\tfrac{\pi}{2}}{\tfrac{\pi}{2}}=\frac{4}{\pi}\sin^{-1}x-1$$

So the integral becomes
$$
\int\Bigl(\frac{4}{\pi}\sin^{-1}x-1\Bigr)\;dx
=\frac{4}{\pi}\int\sin^{-1}x\;dx-\int 1\;dx.
$$

Use the standard antiderivative
$$
\int\sin^{-1}x\;dx=x\sin^{-1}x+\sqrt{1-x^{2}}+C.
$$

Therefore
$$
\int \frac{\sin^{-1}x-\cos^{-1}x}{\sin^{-1}x+\cos^{-1}x}\;dx
=\frac{4}{\pi}\bigl(x\sin^{-1}x+\sqrt{1-x^{2}}\bigr)-x+C$$

$$\int \frac{\sin^{-1}x-\cos^{-1}x}{\sin^{-1}x+\cos^{-1}x}\;dx=\frac{4x}{\pi}\sin^{-1}x+\frac{4}{\pi}\sqrt{1-x^{2}}-x+C
$$

Final Result

$$
\boxed{\displaystyle \frac{4x}{\pi}\sin^{-1}x+\frac{4}{\pi}\sqrt{1-x^{2}}-x+C}
$$

Download concise, exam-ready notes by Anand Classes โ€” perfect for JEE and CBSE students seeking top-quality worked solutions and clear step-by-step explanations.

โฌ…๏ธ NCERT Solutions Miscellaneous Exercise (Set-3) NCERT Solutions Miscellaneous Exercise (Set-1) โžก๏ธ

๐Ÿ“š Buy Study Material & Join Our Coaching

For premium study materials specially designed for JEE, NEET, NDA, CDS, AFCAT, SSC Exams, visit our official study material portal:
๐Ÿ‘‰ https://publishers.anandclasses.co.in/

For JEE/NEET Notes : Visit https://anandclasses.in/

For NDA Notes : Visit https://nda.anandclasses.in/

For SSC Notes : Visit https://ssc.anandclasses.in/

For CDS, AFCAT Notes : Visit https://cds-afcat.anandclasses.in/

To enroll in our offline or online coaching programs, visit our coaching center website:
๐Ÿ‘‰ https://anandclasses.co.in/

๐Ÿ“ž Call us directly at: +91-94631-38669

๐Ÿ’ฌ WhatsApp Us Instantly

Need quick assistance or want to inquire about classes and materials?

๐Ÿ“ฒ Click below to chat instantly on WhatsApp:
๐Ÿ‘‰ Chat on WhatsApp

๐ŸŽฅ Watch Video Lectures

Get access to high-quality video lessons, concept explainers, and revision tips by subscribing to our official YouTube channel:
๐Ÿ‘‰ Neeraj Anand Classes โ€“ YouTube Channel

RELATED TOPICS