Integrals NCERT Solutions Exercise 7.5 Chapter-7 Class 12 Math PDF Study Material (Set-1)

⭐⭐⭐⭐⭐ (5/5 from 59241 reviews)

NCERT Question 1: Evaluate the integral
$$\int \frac{x}{(x+1)(x+2)}\ dx$$

Solution

$$\int \frac{x}{(x+1)(x+2)}\ dx$$

Use partial fraction decomposition:

$$\frac{x}{(x+1)(x+2)} = \frac{A}{x+1} + \frac{B}{x+2}$$

Multiply both sides by $(x+1)(x+2)$:

$$x = A(x+2) + B(x+1)$$

Equate coefficients of $x$ and constants:

  1. Coefficient of $x$: $A + B = 1$
  2. Constant term: $2A + B = 0$

Solve the system:

$$A = -1, \quad B = 2$$

So

$$\frac{x}{(x+1)(x+2)} = -\frac{1}{x+1} + \frac{2}{x+2}$$

Step 1: Integrate each term

$$\int \frac{x}{(x+1)(x+2)}\ dx = \int \left(-\frac{1}{x+1} + \frac{2}{x+2}\right) dx$$

$$\int \frac{x}{(x+1)(x+2)}\ dx = -\ln|x+1| + 2\ln|x+2| + C$$

Combine logarithms:

$$\int \frac{x}{(x+1)(x+2)}\ dx = \ln \left[\frac{(x+2)^2}{|x+1|}\right] + C$$

Final Answer

$$\boxed{\ln\left[\frac{(x+2)^2}{|x+1|}\right] + C}$$

Download complete NCERT integral solutions and practice notes from Anand Classes—perfect for JEE, CBSE, and other competitive exam preparation.


NCERT Question 2: Evaluate the integral
$$\int \frac{dx}{x^2-9}$$

Solution

$$\int \frac{dx}{x^2-9}$$

Use partial fraction decomposition:

$$\frac{1}{x^2-9} = \frac{1}{(x+3)(x-3)} = \frac{A}{x+3} + \frac{B}{x-3}$$

Multiply both sides by $(x+3)(x-3)$:

$$1 = A(x-3) + B(x+3)$$

Equate coefficients of $x$ and constants:

  1. Coefficient of $x$: $A + B = 0$
  2. Constant term: $-3A + 3B = 1$

Solve the system:

$$A = -\frac{1}{6}, \quad B = \frac{1}{6}$$

So

$$\frac{1}{x^2-9} = -\frac{1}{6(x+3)} + \frac{1}{6(x-3)}$$

Step 1: Integrate each term

$$\int \frac{dx}{x^2-9} = \int \left(-\frac{1}{6(x+3)} + \frac{1}{6(x-3)}\right) dx$$

$$\int \frac{dx}{x^2-9} = -\frac{1}{6} \ln|x+3| + \frac{1}{6} \ln|x-3| + C$$

Combine logarithms:

$$\int \frac{dx}{x^2-9} = \frac{1}{6} \ln \left|\frac{x-3}{x+3}\right| + C$$

Final Answer

$$\boxed{\frac{1}{6} \ln \left|\frac{x-3}{x+3}\right| + C}$$

Download step-by-step NCERT integral solutions and concise revision notes from Anand Classes—perfect for JEE, CBSE, and competitive exam preparation.


NCERT Question 3: Evaluate the integral
$$\int \frac{3x-1}{(x-1)(x-2)(x-3)} \; dx$$

Solution

$$\int \frac{3x-1}{(x-1)(x-2)(x-3)} \; dx$$

Use partial fraction decomposition:

$$\frac{3x-1}{(x-1)(x-2)(x-3)} = \frac{A}{x-1} + \frac{B}{x-2} + \frac{C}{x-3}$$

Multiply both sides by $(x-1)(x-2)(x-3)$:

$$3x-1 = A(x-2)(x-3) + B(x-1)(x-3) + C(x-1)(x-2) \quad \text{(i)}$$

Substitute $x = 1, 2, 3$ respectively to solve for $A, B, C$:

$$x=1: 3(1)-1=2 = A(-1)(-2) \implies A=1$$

$$x=2: 3(2)-1=5 = B(1)(-1) \implies B=-5$$

$$x=3: 3(3)-1=8 = C(2)(1) \implies C=4$$

So

$$\frac{3x-1}{(x-1)(x-2)(x-3)} = \frac{1}{x-1} – \frac{5}{x-2} + \frac{4}{x-3}$$

Step 1: Integrate each term

$$\int \frac{3x-1}{(x-1)(x-2)(x-3)} \; dx = \int \left(\frac{1}{x-1} – \frac{5}{x-2} + \frac{4}{x-3}\right) dx$$

$$\int \frac{3x-1}{(x-1)(x-2)(x-3)} \; dx = \ln|x-1| – 5 \ln|x-2| + 4 \ln|x-3| + C$$

Final Answer

$$\boxed{\ln|x-1| – 5 \ln|x-2| + 4 \ln|x-3| + C}$$

Download complete NCERT integral solutions and stepwise tricks from Anand Classes—perfect for JEE, CBSE, and other competitive exam preparation.


NCERT Question 4: Evaluate the integral
$$\int \frac{x}{(x-1)(x-2)(x-3)} \; dx$$

Solution

$$\int \frac{x}{(x-1)(x-2)(x-3)} \; dx$$

Use partial fraction decomposition:

$$\frac{x}{(x-1)(x-2)(x-3)} = \frac{A}{x-1} + \frac{B}{x-2} + \frac{C}{x-3}$$

Multiply both sides by $(x-1)(x-2)(x-3)$:

$$x = A(x-2)(x-3) + B(x-1)(x-3) + C(x-1)(x-2) \quad \text{(i)}$$

Substitute $x = 1, 2, 3$ respectively to solve for $A, B, C$:

$$x=1: 1 = A(-1)(-2) \implies A = \frac{1}{2}$$

$$x=2: 2 = B(1)(-1) \implies B = -2$$

$$x=3: 3 = C(2)(1) \implies C = \frac{3}{2}$$

So

$$\frac{x}{(x-1)(x-2)(x-3)} = \frac{1}{2(x-1)} – \frac{2}{x-2} + \frac{3}{2(x-3)}$$

Step 1: Integrate each term

$$\int \frac{x}{(x-1)(x-2)(x-3)} \;dx = \int \left(\frac{1}{2(x-1)} – \frac{2}{x-2} + \frac{3}{2(x-3)}\right) dx$$

$$\int \frac{x}{(x-1)(x-2)(x-3)} \;dx = \frac{1}{2} \ln|x-1| – 2 \ln|x-2| + \frac{3}{2} \ln|x-3| + C$$

Final Answer

$$\boxed{\frac{1}{2} \ln|x-1| – 2 \ln|x-2| + \frac{3}{2} \ln|x-3| + C}$$

Download detailed NCERT integral solutions and step-by-step tricks from Anand Classes—ideal for JEE, CBSE, and competitive exam preparation.


NCERT Question 5: Evaluate the integral
$$\int \frac{2x}{x^2+3x+2} \; dx$$

Solution

$$\int \frac{2x}{x^2+3x+2} \; dx$$

Factor the denominator:

$$x^2+3x+2 = (x+1)(x+2)$$

Use partial fraction decomposition:

$$\frac{2x}{(x+1)(x+2)} = \frac{A}{x+1} + \frac{B}{x+2}$$

Multiply both sides by $(x+1)(x+2)$:

$$2x = A(x+2) + B(x+1) \quad \text{(i)}$$

Substitute $x = -1$ and $x = -2$ to solve for $A$ and $B$:

$$x=-1: 2(-1) = -2 = A(1) + B(0) \implies A = -2$$
$$x=-2: 2(-2) = -4 = A(0) + B(-1) \implies B = 4$$

So

$$\frac{2x}{(x+1)(x+2)} = -\frac{2}{x+1} + \frac{4}{x+2}$$

Step 1: Integrate each term

$$\int \frac{2x}{x^2+3x+2} \; dx = \int \left(-\frac{2}{x+1} + \frac{4}{x+2}\right) dx$$

$$\int \frac{2x}{x^2+3x+2} \; dx = -2 \ln|x+1| + 4 \ln|x+2| + C$$

Combine logarithms:

$$\int \frac{2x}{x^2+3x+2} \; dx = \ln \frac{(x+2)^4}{(x+1)^2} + C$$

Final Answer

$$\boxed{\ln \frac{(x+2)^4}{(x+1)^2} + C}$$

Download full NCERT integral solutions and step-by-step tricks from Anand Classes—perfect for JEE, CBSE, and competitive exam practice.


NCERT Question 6: Evaluate the integral
$$\int \frac{1-x^2}{x(1-2x)} \; dx$$

Solution

$$\int \frac{1-x^2}{x(1-2x)} \; dx$$

The integrand is an improper fraction, so first divide:

$$\frac{1-x^2}{x(1-2x)} = \frac{1}{2} + \frac{2-x}{2x(1-2x)}$$

Now decompose the proper fraction:

$$\frac{2-x}{x(1-2x)} = \frac{A}{x} + \frac{B}{1-2x}$$

Multiply both sides by $x(1-2x)$:

$$2-x = A(1-2x) + Bx \quad \text{(i)}$$

Substitute $x=0$ and $x=1/2$ to solve for $A$ and $B$:

$$x=0: 2 = A(1) + B(0) \implies A=2$$

$$x=1/2: 2-1/2=3/2 = A(0) + B(1/2) \implies B=3$$

So

$$\frac{2-x}{x(1-2x)} = \frac{2}{x} + \frac{3}{1-2x}$$

Substitute back:

$$\frac{1-x^2}{x(1-2x)} = \frac{1}{2} + \frac{1}{2} \left(\frac{2}{x} + \frac{3}{1-2x}\right)$$

Step 1: Integrate term by term

$$\int \frac{1-x^2}{x(1-2x)} \; dx = \int \left[ \frac{1}{2} + \frac{1}{2} \left(\frac{2}{x} + \frac{3}{1-2x}\right) \right] dx$$

$$\int \frac{1-x^2}{x(1-2x)} \; dx = \int \frac{1}{2} dx + \int \frac{1}{x} dx + \frac{3}{2} \int \frac{1}{1-2x} dx$$

$$\int \frac{1-x^2}{x(1-2x)} \; dx = \frac{x}{2} + \ln|x| + \frac{3}{2} \cdot \left(-\frac{1}{2} \ln|1-2x|\right) + C$$

$$\int \frac{1-x^2}{x(1-2x)} \; dx = \frac{x}{2} + \ln|x| – \frac{3}{4} \ln|1-2x| + C$$

Final Answer

$$\boxed{\frac{x}{2} + \ln|x| – \frac{3}{4} \ln|1-2x| + C}$$

Download step-by-step NCERT integral solutions and tricks from Anand Classes—perfect for JEE, CBSE, and competitive exams.


NCERT Question 7: Evaluate the integral
$$\int \frac{x}{(x^2+1)(x-1)} \; dx$$

Solution

$$\int \frac{x}{(x^2+1)(x-1)} \; dx$$

Use partial fraction decomposition:

$$\frac{x}{(x^2+1)(x-1)} = \frac{Ax+B}{x^2+1} + \frac{C}{x-1}$$

Multiply both sides by $(x^2+1)(x-1)$:

$$x = (Ax+B)(x-1) + C(x^2+1)$$

Expand:

$$x = Ax^2 – Ax + Bx – B + Cx^2 + C$$

Equate coefficients of $x^2$, $x$, and constant term:

$$
\begin{cases}
A + C = 0 \\
-A + B = 1 \\
-B + C = 0
\end{cases}
$$

Solving gives:

$$A = -\frac{1}{2}, \quad B = \frac{1}{2}, \quad C = \frac{1}{2}$$

So

$$\frac{x}{(x^2+1)(x-1)} = \frac{-\frac{1}{2}x + \frac{1}{2}}{x^2+1} + \frac{1}{2}\frac{1}{x-1}$$

Step 1: Integrate each term

$$\int \frac{x}{(x^2+1)(x-1)} \; dx = -\frac{1}{2} \int \frac{x}{x^2+1} dx + \frac{1}{2} \int \frac{dx}{x^2+1} + \frac{1}{2} \int \frac{dx}{x-1}$$

Consider

$$\int \frac{2x}{x^2+1} dx = \ln|x^2+1|$$

Thus

$$-\frac{1}{2} \int \frac{x}{x^2+1} dx = -\frac{1}{4} \int \frac{2x}{x^2+1} dx = -\frac{1}{4} \ln|x^2+1|$$

$$\frac{1}{2} \int \frac{1}{x^2+1} dx = \frac{1}{2} \tan^{-1}x$$

$$\frac{1}{2} \int \frac{1}{x-1} dx = \frac{1}{2} \ln|x-1|$$

Combine terms:

$$\int \frac{x}{(x^2+1)(x-1)} dx = \frac{1}{2} \ln|x-1| – \frac{1}{4} \ln|x^2+1| + \frac{1}{2} \tan^{-1}x + C$$

Final Answer

$$\boxed{\frac{1}{2} \ln|x-1| – \frac{1}{4} \ln|x^2+1| + \frac{1}{2} \tan^{-1}x + C}$$

Download detailed NCERT integral solutions from Anand Classes—perfect for JEE, CBSE, and other competitive exams.


NCERT Question 8: Evaluate the integral
$$\int \frac{x}{(x-1)^2 (x+2)} \; dx$$

Solution

$$\int \frac{x}{(x-1)^2 (x+2)} \; dx$$

Use partial fraction decomposition:

$$\frac{x}{(x-1)^2 (x+2)} = \frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{C}{x+2}$$

Multiply both sides by $(x-1)^2 (x+2)$:

$$x = A(x-1)(x+2) + B(x+2) + C(x-1)^2$$

Substitute $x = 1$:

$$B = \frac{1}{3}$$

Equate coefficients of $x^2$ and constants:

$$
\begin{cases}
A + C = 0 \\
-2A + 2B + C = 0
\end{cases}
$$

Solving gives:

$$A = \frac{2}{9}, \quad B = \frac{1}{3}, \quad C = -\frac{2}{9}$$

So

$$\frac{x}{(x-1)^2 (x+2)} = \frac{2}{9(x-1)} + \frac{1}{3(x-1)^2} – \frac{2}{9(x+2)}$$

Step 1: Integrate each term

$$ \int \frac{x}{(x-1)^2 (x+2)} dx = \frac{2}{9} \int \frac{1}{x-1} dx + \frac{1}{3} \int \frac{1}{(x-1)^2} dx – \frac{2}{9} \int \frac{1}{x+2} dx $$

$$ \int \frac{x}{(x-1)^2 (x+2)} dx = \frac{2}{9} \ln|x-1| + \frac{1}{3} \left(-\frac{1}{x-1}\right) – \frac{2}{9} \ln|x+2| + C $$

Combine logarithms:

$$\int \frac{x}{(x-1)^2 (x+2)} dx = \frac{2}{9} \ln\left|\frac{x-1}{x+2}\right| – \frac{1}{3(x-1)} + C$$

Final Answer

$$\boxed{\frac{2}{9} \ln\left|\frac{x-1}{x+2}\right| – \frac{1}{3(x-1)} + C}$$

Download comprehensive NCERT integral solutions from Anand Classes—ideal for JEE, CBSE, and other competitive exams.


NCERT Question 9: Evaluate the integral
$$\int \frac{3x+5}{x^3 – x^2 – x + 1} \; dx$$

Solution

$$\int \frac{3x+5}{x^3 – x^2 – x + 1} \; dx$$

Factor the denominator:

$$x^3 – x^2 – x + 1 = (x-1)^2 (x+1)$$

Use partial fraction decomposition:

$$\frac{3x+5}{(x-1)^2 (x+1)} = \frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{C}{x+1}$$

Multiply both sides by $(x-1)^2(x+1)$:

$$3x + 5 = A(x-1)(x+1) + B(x+1) + C(x-1)^2$$

Substitute $x = 1$:

$$B = 4$$

Equate coefficients of $x^2$ and $x$:

$$
\begin{cases}
A + C = 0 \\
B – 2C = 3
\end{cases}
$$

Solving gives:

$$A = -\frac{1}{2}, \quad B = 4, \quad C = \frac{1}{2}$$

So

$$\frac{3x+5}{(x-1)^2 (x+1)} = -\frac{1}{2}\frac{1}{x-1} + \frac{4}{(x-1)^2} + \frac{1}{2}\frac{1}{x+1}$$

Step 1: Integrate each term

$$ \int \frac{3x+5}{(x-1)^2 (x+1)} dx = -\frac{1}{2} \int \frac{dx}{x-1} + 4 \int \frac{dx}{(x-1)^2} + \frac{1}{2} \int \frac{dx}{x+1} $$

$$ \int \frac{3x+5}{(x-1)^2 (x+1)} dx = -\frac{1}{2} \ln|x-1| – \frac{4}{x-1} + \frac{1}{2} \ln|x+1| + C $$

Combine logarithms:

$$\int \frac{3x+5}{(x-1)^2 (x+1)} dx = \frac{1}{2} \ln\left|\frac{x+1}{x-1}\right| – \frac{4}{x-1} + C$$

Final Answer

$$\boxed{\frac{1}{2} \ln\left|\frac{x+1}{x-1}\right| – \frac{4}{x-1} + C}$$

Get more top-quality partial fraction integrals and NCERT solutions from Anand Classes, perfect for JEE and CBSE exam preparation.


NCERT Question 10: Evaluate the integral
$$\int \frac{2x-3}{(x^2-1)(2x+3)} \; dx$$

Solution

$$\int \frac{2x-3}{(x^2-1)(2x+3)} \; dx$$

Factor the denominator:

$$(x^2-1)(2x+3) = (x+1)(x-1)(2x+3)$$

Use partial fraction decomposition:

$$\frac{2x-3}{(x+1)(x-1)(2x+3)} = \frac{A}{x+1} + \frac{B}{x-1} + \frac{C}{2x+3}$$

Multiply both sides by $(x+1)(x-1)(2x+3)$:

$$2x-3 = A(x-1)(2x+3) + B(x+1)(2x+3) + C(x^2-1)$$

Expand each term:

$$
A(x-1)(2x+3) = 2A x^2 + A x – 3A \\[10pt]
B(x+1)(2x+3) = 2B x^2 + 5B x + 3B \\[10pt]
C(x^2-1) = C x^2 – C
$$

Combine like terms:

$$2x – 3 = (2A + 2B + C)x^2 + (A + 5B)x + (-3A + 3B – C)$$

Equating coefficients:

$$
\begin{cases}
2A + 2B + C = 0 \\
A + 5B = 2 \\
-3A + 3B – C = -3
\end{cases}
$$

Solving gives:

$$A = \frac{5}{2}, \quad B = -\frac{1}{10}, \quad C = -\frac{24}{5}$$

Step 1: Integrate each term

$$
\int \frac{2x-3}{(x^2-1)(2x+3)} dx = \int \frac{5/2}{x+1} dx + \int \frac{-1/10}{x-1} dx + \int \frac{-24/5}{2x+3} dx $$

$$\int \frac{2x-3}{(x^2-1)(2x+3)} dx = \frac{5}{2} \ln|x+1| – \frac{1}{10} \ln|x-1| – \frac{24}{5} \cdot \frac{1}{2} \ln|2x+3| + C $$

$$\int \frac{2x-3}{(x^2-1)(2x+3)} dx = \frac{5}{2} \ln|x+1| – \frac{1}{10} \ln|x-1| – \frac{12}{5} \ln|2x+3| + C $$

Final Answer

$$\boxed{\frac{5}{2} \ln|x+1| – \frac{1}{10} \ln|x-1| – \frac{12}{5} \ln|2x+3| + C}$$

Download detailed NCERT integral solutions by Anand Classes, perfect for JEE and CBSE exam preparation with step-by-step methods.


NCERT Question 11: Evaluate the integral
$$\int \frac{5x}{(x+1)(x^2-4)} \; dx$$

Solution

$$\int \frac{5x}{(x+1)(x^2-4)} \; dx$$

Factor the quadratic:

$$x^2-4 = (x+2)(x-2)$$

So the integrand becomes:

$$\frac{5x}{(x+1)(x+2)(x-2)}$$

Use partial fraction decomposition:

$$\frac{5x}{(x+1)(x+2)(x-2)} = \frac{A}{x+1} + \frac{B}{x+2} + \frac{C}{x-2}$$

Multiply both sides by $(x+1)(x+2)(x-2)$:

$$5x = A(x+2)(x-2) + B(x+1)(x-2) + C(x+1)(x+2)$$

Substitute $x=-1, -2, 2$ to solve for $A, B, C$:

$$
A = \frac{5}{3}, \quad B = -\frac{5}{2}, \quad C = \frac{5}{6}
$$

Step 1: Integrate each term

$$
\int \frac{5x}{(x+1)(x^2-4)} dx = \int \frac{5/3}{x+1} dx + \int \frac{-5/2}{x+2} dx + \int \frac{5/6}{x-2} dx $$

$$\int \frac{5x}{(x+1)(x^2-4)} dx = \frac{5}{3} \ln|x+1| – \frac{5}{2} \ln|x+2| + \frac{5}{6} \ln|x-2| + C $$

Final Answer

$$\boxed{\frac{5}{3} \ln|x+1| – \frac{5}{2} \ln|x+2| + \frac{5}{6} \ln|x-2| + C}$$

Download top-quality NCERT integration solutions by Anand Classes, perfect for JEE and CBSE preparation with clear step-by-step explanations.


NCERT Question 12: Evaluate the integral
$$\int \frac{x^3+x+1}{x^2-1} \; dx$$

Solution

$$\int \frac{x^3+x+1}{x^2-1} \; dx$$

The integrand is an improper fraction. Perform polynomial division:

$$
\frac{x^3+x+1}{x^2-1} = x + \frac{2x+1}{x^2-1}
$$

Decompose the proper fraction using partial fractions:

$$
\frac{2x+1}{x^2-1} = \frac{2x+1}{(x+1)(x-1)} = \frac{A}{x+1} + \frac{B}{x-1}
$$

Multiply through by $(x+1)(x-1)$:

$$
2x+1 = A(x-1) + B(x+1)
$$

Substitute $x=1$ and $x=-1$:

$$
A = \frac{1}{2}, \quad B = \frac{3}{2}
$$

So:

$$
\frac{x^3+x+1}{x^2-1} = x + \frac{1}{2(x+1)} + \frac{3}{2(x-1)}
$$

Step 1: Integrate each term

$$
\int \frac{x^3+x+1}{x^2-1} dx = \int x dx + \frac{1}{2} \int \frac{1}{x+1} dx + \frac{3}{2} \int \frac{1}{x-1} dx
$$

$$
\int \frac{x^3+x+1}{x^2-1} dx = \frac{x^2}{2} + \frac{1}{2} \ln|x+1| + \frac{3}{2} \ln|x-1| + C
$$

Final Answer

$$\boxed{\frac{x^2}{2} + \frac{1}{2} \ln|x+1| + \frac{3}{2} \ln|x-1| + C}$$

Download detailed NCERT integration solutions by Anand Classes, ideal for mastering polynomial fraction integrals for JEE and CBSE exams.

⬅️ NCERT Solutions IExercise 7.4 9Set-2) NCERT Solutions Exercise 7.4 (Set-1) ➡️

📚 Buy Study Material & Join Our Coaching

For premium study materials specially designed for JEE, NEET, NDA, CDS, AFCAT, SSC Exams, visit our official study material portal:
👉 https://publishers.anandclasses.co.in/

For JEE/NEET Notes : Visit https://anandclasses.in/

For NDA Notes : Visit https://nda.anandclasses.in/

For SSC Notes : Visit https://ssc.anandclasses.in/

For CDS, AFCAT Notes : Visit https://cds-afcat.anandclasses.in/

To enroll in our offline or online coaching programs, visit our coaching center website:
👉 https://anandclasses.co.in/

📞 Call us directly at: +91-94631-38669

💬 WhatsApp Us Instantly

Need quick assistance or want to inquire about classes and materials?

📲 Click below to chat instantly on WhatsApp:
👉 Chat on WhatsApp

🎥 Watch Video Lectures

Get access to high-quality video lessons, concept explainers, and revision tips by subscribing to our official YouTube channel:
👉 Neeraj Anand Classes – YouTube Channel

RELATED TOPICS